Complex energies and transition dipoles for shape-type resonances of uracil anion from stabilization curves via Padé
Absorption of slow moving electrons by neutral ground state nucleobases has been known to produce resonance metastable states. There are indications that such metastable states may play a key role in DNA/RNA damage. Therefore, herein, we present an ab initio non-Hermitian investigation of the resona...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2022-05, Vol.156 (19), p.194101-194101 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194101 |
---|---|
container_issue | 19 |
container_start_page | 194101 |
container_title | The Journal of chemical physics |
container_volume | 156 |
creator | Bouskila, Gal Landau, Arie Haritan, Idan Moiseyev, Nimrod Bhattacharya, Debarati |
description | Absorption of slow moving electrons by neutral ground state nucleobases has been known to produce resonance metastable states. There are indications that such metastable states may play a key role in DNA/RNA damage. Therefore, herein, we present an ab initio non-Hermitian investigation of the resonance positions and decay rates for the low lying shape-type states of the uracil anion. In addition, we calculate the complex transition dipoles between these resonance states. We employ the resonance via Padé (RVP) method to calculate these complex properties from real stabilization curves by analytical dilation into the complex plane. This method has already been successfully applied to many small molecular systems, and herein, we present the first application of RVP to a medium-sized system. The presented resonance energies are optimized with respect to the size of the basis set and compared with previous theoretical studies and experimental findings. Complex transition dipoles between the shape-type resonances are computed using the optimal basis set. The ability to calculate ab initio energies and lifetimes of biologically relevant systems paves the way for studying reactions of such systems in which autoionization takes place, while the ability to also calculate their complex transition dipoles opens the door for studying photo-induced dynamics of such biological molecules. |
doi_str_mv | 10.1063/5.0086887 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2665335167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665335167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-1e065460692d3c1261fa960358dfb60a97b5b5ceef8666d7dd2438a5cd35763b3</originalsourceid><addsrcrecordid>eNp90d2K1DAUB_AgK844euELLIG9cYWuSdOcpJfL4KowoBd6XdJ8aIa2qUk7uL6Rz-GLmflwhBW8CiS_88_JCUIvKLmhBNhrfkOIBCnFI7SkRNaFgJpcoCUhJS1qILBAT1PaEkKoKKsnaME4rwVU9RLN69CPnf2O7WDjF28TVoPBU1RD8pMPAzZ-DF3ediHi9FWNtpjuR4ujTWFQg84nweE5Ku27XLqvcDH0OE2q9Z3_oQ4heo67LHde4Y_K_Pr5DD12qkv2-Wldoc93bz6t3xWbD2_fr283ha6onApqCfAq91-XhmlaAnUqP4dxaVwLRNWi5S3X1joJAEYYU1ZMKq4N4wJYy1bo5TF3jOHbbNPU9D5p23VqsGFOTQkghBQ18EyvHtBtmOOQu9srzhinILK6PiodQ0rRumaMvlfxvqGk2f9Fw5vTX2R7eUqc296as_wz_AxeHUHSfjoM6mx2If5Nakbj_of_vfo3ZOihRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665335167</pqid></control><display><type>article</type><title>Complex energies and transition dipoles for shape-type resonances of uracil anion from stabilization curves via Padé</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bouskila, Gal ; Landau, Arie ; Haritan, Idan ; Moiseyev, Nimrod ; Bhattacharya, Debarati</creator><creatorcontrib>Bouskila, Gal ; Landau, Arie ; Haritan, Idan ; Moiseyev, Nimrod ; Bhattacharya, Debarati</creatorcontrib><description>Absorption of slow moving electrons by neutral ground state nucleobases has been known to produce resonance metastable states. There are indications that such metastable states may play a key role in DNA/RNA damage. Therefore, herein, we present an ab initio non-Hermitian investigation of the resonance positions and decay rates for the low lying shape-type states of the uracil anion. In addition, we calculate the complex transition dipoles between these resonance states. We employ the resonance via Padé (RVP) method to calculate these complex properties from real stabilization curves by analytical dilation into the complex plane. This method has already been successfully applied to many small molecular systems, and herein, we present the first application of RVP to a medium-sized system. The presented resonance energies are optimized with respect to the size of the basis set and compared with previous theoretical studies and experimental findings. Complex transition dipoles between the shape-type resonances are computed using the optimal basis set. The ability to calculate ab initio energies and lifetimes of biologically relevant systems paves the way for studying reactions of such systems in which autoionization takes place, while the ability to also calculate their complex transition dipoles opens the door for studying photo-induced dynamics of such biological molecules.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0086887</identifier><identifier>PMID: 35597649</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anions ; Autoionization ; Decay rate ; Dipoles ; Mathematical analysis ; Metastable state ; Physics ; Resonance ; Stabilization ; Uracil</subject><ispartof>The Journal of chemical physics, 2022-05, Vol.156 (19), p.194101-194101</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-1e065460692d3c1261fa960358dfb60a97b5b5ceef8666d7dd2438a5cd35763b3</citedby><cites>FETCH-LOGICAL-c418t-1e065460692d3c1261fa960358dfb60a97b5b5ceef8666d7dd2438a5cd35763b3</cites><orcidid>0000-0001-6233-6480 ; 0000-0001-6986-848X ; 0000-0001-6001-4322 ; 0000-0002-1924-1555 ; 0000-0003-0385-6288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0086887$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35597649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouskila, Gal</creatorcontrib><creatorcontrib>Landau, Arie</creatorcontrib><creatorcontrib>Haritan, Idan</creatorcontrib><creatorcontrib>Moiseyev, Nimrod</creatorcontrib><creatorcontrib>Bhattacharya, Debarati</creatorcontrib><title>Complex energies and transition dipoles for shape-type resonances of uracil anion from stabilization curves via Padé</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Absorption of slow moving electrons by neutral ground state nucleobases has been known to produce resonance metastable states. There are indications that such metastable states may play a key role in DNA/RNA damage. Therefore, herein, we present an ab initio non-Hermitian investigation of the resonance positions and decay rates for the low lying shape-type states of the uracil anion. In addition, we calculate the complex transition dipoles between these resonance states. We employ the resonance via Padé (RVP) method to calculate these complex properties from real stabilization curves by analytical dilation into the complex plane. This method has already been successfully applied to many small molecular systems, and herein, we present the first application of RVP to a medium-sized system. The presented resonance energies are optimized with respect to the size of the basis set and compared with previous theoretical studies and experimental findings. Complex transition dipoles between the shape-type resonances are computed using the optimal basis set. The ability to calculate ab initio energies and lifetimes of biologically relevant systems paves the way for studying reactions of such systems in which autoionization takes place, while the ability to also calculate their complex transition dipoles opens the door for studying photo-induced dynamics of such biological molecules.</description><subject>Anions</subject><subject>Autoionization</subject><subject>Decay rate</subject><subject>Dipoles</subject><subject>Mathematical analysis</subject><subject>Metastable state</subject><subject>Physics</subject><subject>Resonance</subject><subject>Stabilization</subject><subject>Uracil</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90d2K1DAUB_AgK844euELLIG9cYWuSdOcpJfL4KowoBd6XdJ8aIa2qUk7uL6Rz-GLmflwhBW8CiS_88_JCUIvKLmhBNhrfkOIBCnFI7SkRNaFgJpcoCUhJS1qILBAT1PaEkKoKKsnaME4rwVU9RLN69CPnf2O7WDjF28TVoPBU1RD8pMPAzZ-DF3ediHi9FWNtpjuR4ujTWFQg84nweE5Ku27XLqvcDH0OE2q9Z3_oQ4heo67LHde4Y_K_Pr5DD12qkv2-Wldoc93bz6t3xWbD2_fr283ha6onApqCfAq91-XhmlaAnUqP4dxaVwLRNWi5S3X1joJAEYYU1ZMKq4N4wJYy1bo5TF3jOHbbNPU9D5p23VqsGFOTQkghBQ18EyvHtBtmOOQu9srzhinILK6PiodQ0rRumaMvlfxvqGk2f9Fw5vTX2R7eUqc296as_wz_AxeHUHSfjoM6mx2If5Nakbj_of_vfo3ZOihRw</recordid><startdate>20220521</startdate><enddate>20220521</enddate><creator>Bouskila, Gal</creator><creator>Landau, Arie</creator><creator>Haritan, Idan</creator><creator>Moiseyev, Nimrod</creator><creator>Bhattacharya, Debarati</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6233-6480</orcidid><orcidid>https://orcid.org/0000-0001-6986-848X</orcidid><orcidid>https://orcid.org/0000-0001-6001-4322</orcidid><orcidid>https://orcid.org/0000-0002-1924-1555</orcidid><orcidid>https://orcid.org/0000-0003-0385-6288</orcidid></search><sort><creationdate>20220521</creationdate><title>Complex energies and transition dipoles for shape-type resonances of uracil anion from stabilization curves via Padé</title><author>Bouskila, Gal ; Landau, Arie ; Haritan, Idan ; Moiseyev, Nimrod ; Bhattacharya, Debarati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-1e065460692d3c1261fa960358dfb60a97b5b5ceef8666d7dd2438a5cd35763b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anions</topic><topic>Autoionization</topic><topic>Decay rate</topic><topic>Dipoles</topic><topic>Mathematical analysis</topic><topic>Metastable state</topic><topic>Physics</topic><topic>Resonance</topic><topic>Stabilization</topic><topic>Uracil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouskila, Gal</creatorcontrib><creatorcontrib>Landau, Arie</creatorcontrib><creatorcontrib>Haritan, Idan</creatorcontrib><creatorcontrib>Moiseyev, Nimrod</creatorcontrib><creatorcontrib>Bhattacharya, Debarati</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouskila, Gal</au><au>Landau, Arie</au><au>Haritan, Idan</au><au>Moiseyev, Nimrod</au><au>Bhattacharya, Debarati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex energies and transition dipoles for shape-type resonances of uracil anion from stabilization curves via Padé</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2022-05-21</date><risdate>2022</risdate><volume>156</volume><issue>19</issue><spage>194101</spage><epage>194101</epage><pages>194101-194101</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Absorption of slow moving electrons by neutral ground state nucleobases has been known to produce resonance metastable states. There are indications that such metastable states may play a key role in DNA/RNA damage. Therefore, herein, we present an ab initio non-Hermitian investigation of the resonance positions and decay rates for the low lying shape-type states of the uracil anion. In addition, we calculate the complex transition dipoles between these resonance states. We employ the resonance via Padé (RVP) method to calculate these complex properties from real stabilization curves by analytical dilation into the complex plane. This method has already been successfully applied to many small molecular systems, and herein, we present the first application of RVP to a medium-sized system. The presented resonance energies are optimized with respect to the size of the basis set and compared with previous theoretical studies and experimental findings. Complex transition dipoles between the shape-type resonances are computed using the optimal basis set. The ability to calculate ab initio energies and lifetimes of biologically relevant systems paves the way for studying reactions of such systems in which autoionization takes place, while the ability to also calculate their complex transition dipoles opens the door for studying photo-induced dynamics of such biological molecules.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35597649</pmid><doi>10.1063/5.0086887</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6233-6480</orcidid><orcidid>https://orcid.org/0000-0001-6986-848X</orcidid><orcidid>https://orcid.org/0000-0001-6001-4322</orcidid><orcidid>https://orcid.org/0000-0002-1924-1555</orcidid><orcidid>https://orcid.org/0000-0003-0385-6288</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2022-05, Vol.156 (19), p.194101-194101 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2665335167 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Anions Autoionization Decay rate Dipoles Mathematical analysis Metastable state Physics Resonance Stabilization Uracil |
title | Complex energies and transition dipoles for shape-type resonances of uracil anion from stabilization curves via Padé |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20energies%20and%20transition%20dipoles%20for%20shape-type%20resonances%20of%20uracil%20anion%20from%20stabilization%20curves%20via%20Pad%C3%A9&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Bouskila,%20Gal&rft.date=2022-05-21&rft.volume=156&rft.issue=19&rft.spage=194101&rft.epage=194101&rft.pages=194101-194101&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0086887&rft_dat=%3Cproquest_pubme%3E2665335167%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665335167&rft_id=info:pmid/35597649&rfr_iscdi=true |