Concordance Study of a 520-Gene Next-Generation Sequencing-Based Genomic Profiling Assay of Tissue and Plasma Samples
Introduction Next-generation sequencing (NGS) enables simultaneous detection of actionable somatic variants and estimation of genomic signatures such as tumor mutational burden (TMB) or microsatellite instability (MSI) status, which empowers therapeutic decisions in clinical oncology. Objective Our...
Gespeichert in:
Veröffentlicht in: | Molecular diagnosis & therapy 2022-05, Vol.26 (3), p.309-322 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | 3 |
container_start_page | 309 |
container_title | Molecular diagnosis & therapy |
container_volume | 26 |
creator | Wang, Minghui Chen, Xianshan Dai, Yongmei Wu, Duoguang Liu, Fang Yang, Zheng Song, Baozhi Xie, Li Yang, Liangwei Zhao, Weidi Zhang, Chenxu Shen, Weixi Fan, Chengjuan Teng, Chong Zhao, Xue Gao, Naisheng Shang, Di Zhao, Guofang Xin, Tao |
description | Introduction
Next-generation sequencing (NGS) enables simultaneous detection of actionable somatic variants and estimation of genomic signatures such as tumor mutational burden (TMB) or microsatellite instability (MSI) status, which empowers therapeutic decisions in clinical oncology.
Objective
Our retrospective study investigated the clinical performance of somatic variant detection in paired tissue and blood samples using a large targeted gene panel, the OncoScreen Plus, which interrogates 520 cancer-related genes.
Methods
We analyzed sequencing data derived from paired tissue and blood samples of 3005 patients spanning 20 solid tumor types, including lung (
n
= 1971), gastrointestinal (
n
= 625), breast (
n
= 120) and gynecological (
n
= 110), genitourinary (
n
= 38), and other cancers (
n
= 141).
Results
Across tumor types, the OncoScreen Plus panel achieved a high tissue detection rate, with an average of 97.9%. The average plasma detection rate was 72.2%, with an average tissue concordance rate of 36.6%. Considering all variant types, the plasma assay yielded an average sensitivity/true positive rate of 45.7%, with a positive predictive value of 64.7% relative to tissue assay. Pearson correlation analysis revealed a strong correlation in TMB estimated from blood and tissue samples (correlation coefficient 0.845,
R
2
= 0.756). MSI-high status was identified in five tumor types, including endometrial cancer (28.6%), colorectal cancer (2.5%), ovarian cancer (2.0%), gastric cancer (1.5%), and lung adenocarcinoma (0.2%).
Conclusion
Paired tumor and blood samples from a large cohort of patients spanning 20 tumor types demonstrated that the OncoScreen Plus is a reliable pan-cancer panel for the accurate detection of somatic variants and genomic signatures that could guide individualized treatment strategies to improve the care of patients with advanced cancer. |
doi_str_mv | 10.1007/s40291-022-00579-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2665176944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665176944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-328a40f7fc2bdc673027d31c2a4e50746475f036117356ce7dc06f23b1799fcf3</originalsourceid><addsrcrecordid>eNp9kFtPAyEQhYnRWG9_wAdD4jM6wALuY228JUZNqs-EstBs04UKu4n992Lr5c2nOZk5cwY-hE4pXFAAdZkrYDUlwBgBEKomdAcdUFoEA4DdjVaEgmQjdJjzAqASsmb7aMQFB8EEP0DDJAYbU2OCdXjaD80aR48NFgzInQsOP7mPfqOS6dsY8NS9Dy7YNszJtcmuwWUWu9bilxR9uyx9PM7ZbGJe25wHh01o8MvS5M7gqelWS5eP0Z43y-xOvusReru9eZ3ck8fnu4fJ-JFYrkRPOLsyFXjlLZs1VioOTDWcWmYqJ0BVslLCA5fln1xI61RjQXrGZ4VB7a3nR-h8m7tKsTw793oRhxTKSc2kFFTJuqqKi21dNsWck_N6ldrOpLWmoL9I6y1pXUjrDWlNy9LZd_Qw61zzu_KDthj41pDLKMxd-rv9T-wnpO6Htw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665176944</pqid></control><display><type>article</type><title>Concordance Study of a 520-Gene Next-Generation Sequencing-Based Genomic Profiling Assay of Tissue and Plasma Samples</title><source>MEDLINE</source><source>Springer Online Journals</source><creator>Wang, Minghui ; Chen, Xianshan ; Dai, Yongmei ; Wu, Duoguang ; Liu, Fang ; Yang, Zheng ; Song, Baozhi ; Xie, Li ; Yang, Liangwei ; Zhao, Weidi ; Zhang, Chenxu ; Shen, Weixi ; Fan, Chengjuan ; Teng, Chong ; Zhao, Xue ; Gao, Naisheng ; Shang, Di ; Zhao, Guofang ; Xin, Tao</creator><creatorcontrib>Wang, Minghui ; Chen, Xianshan ; Dai, Yongmei ; Wu, Duoguang ; Liu, Fang ; Yang, Zheng ; Song, Baozhi ; Xie, Li ; Yang, Liangwei ; Zhao, Weidi ; Zhang, Chenxu ; Shen, Weixi ; Fan, Chengjuan ; Teng, Chong ; Zhao, Xue ; Gao, Naisheng ; Shang, Di ; Zhao, Guofang ; Xin, Tao</creatorcontrib><description>Introduction
Next-generation sequencing (NGS) enables simultaneous detection of actionable somatic variants and estimation of genomic signatures such as tumor mutational burden (TMB) or microsatellite instability (MSI) status, which empowers therapeutic decisions in clinical oncology.
Objective
Our retrospective study investigated the clinical performance of somatic variant detection in paired tissue and blood samples using a large targeted gene panel, the OncoScreen Plus, which interrogates 520 cancer-related genes.
Methods
We analyzed sequencing data derived from paired tissue and blood samples of 3005 patients spanning 20 solid tumor types, including lung (
n
= 1971), gastrointestinal (
n
= 625), breast (
n
= 120) and gynecological (
n
= 110), genitourinary (
n
= 38), and other cancers (
n
= 141).
Results
Across tumor types, the OncoScreen Plus panel achieved a high tissue detection rate, with an average of 97.9%. The average plasma detection rate was 72.2%, with an average tissue concordance rate of 36.6%. Considering all variant types, the plasma assay yielded an average sensitivity/true positive rate of 45.7%, with a positive predictive value of 64.7% relative to tissue assay. Pearson correlation analysis revealed a strong correlation in TMB estimated from blood and tissue samples (correlation coefficient 0.845,
R
2
= 0.756). MSI-high status was identified in five tumor types, including endometrial cancer (28.6%), colorectal cancer (2.5%), ovarian cancer (2.0%), gastric cancer (1.5%), and lung adenocarcinoma (0.2%).
Conclusion
Paired tumor and blood samples from a large cohort of patients spanning 20 tumor types demonstrated that the OncoScreen Plus is a reliable pan-cancer panel for the accurate detection of somatic variants and genomic signatures that could guide individualized treatment strategies to improve the care of patients with advanced cancer.</description><identifier>ISSN: 1177-1062</identifier><identifier>EISSN: 1179-2000</identifier><identifier>DOI: 10.1007/s40291-022-00579-1</identifier><identifier>PMID: 35305253</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adenocarcinoma ; Assaying ; Biomarkers ; Biomarkers, Tumor - genetics ; Biomedical and Life Sciences ; Biomedicine ; Blood ; Breast ; Cancer ; Cancer Research ; Colorectal cancer ; Colorectal carcinoma ; Correlation analysis ; Correlation coefficient ; Correlation coefficients ; Endometrial cancer ; Endometrium ; Gastric cancer ; Gene sequencing ; Genes ; Genomes ; Genomics ; High-Throughput Nucleotide Sequencing ; Human Genetics ; Humans ; Immunotherapy ; Laboratory Medicine ; Lung cancer ; Lungs ; Medical laboratories ; Microsatellite Instability ; Molecular Medicine ; Mutation ; Neoplasms - diagnosis ; Neoplasms - genetics ; Next-generation sequencing ; Original Research Article ; Ovarian cancer ; Patients ; Pharmacotherapy ; Plasma ; Retrospective Studies ; Signatures ; Solid tumors ; Tissue analysis ; Tissues ; Tumors</subject><ispartof>Molecular diagnosis & therapy, 2022-05, Vol.26 (3), p.309-322</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.</rights><rights>Copyright Springer Nature B.V. May 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-328a40f7fc2bdc673027d31c2a4e50746475f036117356ce7dc06f23b1799fcf3</citedby><cites>FETCH-LOGICAL-c375t-328a40f7fc2bdc673027d31c2a4e50746475f036117356ce7dc06f23b1799fcf3</cites><orcidid>0000-0002-7747-4269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40291-022-00579-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40291-022-00579-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35305253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Minghui</creatorcontrib><creatorcontrib>Chen, Xianshan</creatorcontrib><creatorcontrib>Dai, Yongmei</creatorcontrib><creatorcontrib>Wu, Duoguang</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Yang, Zheng</creatorcontrib><creatorcontrib>Song, Baozhi</creatorcontrib><creatorcontrib>Xie, Li</creatorcontrib><creatorcontrib>Yang, Liangwei</creatorcontrib><creatorcontrib>Zhao, Weidi</creatorcontrib><creatorcontrib>Zhang, Chenxu</creatorcontrib><creatorcontrib>Shen, Weixi</creatorcontrib><creatorcontrib>Fan, Chengjuan</creatorcontrib><creatorcontrib>Teng, Chong</creatorcontrib><creatorcontrib>Zhao, Xue</creatorcontrib><creatorcontrib>Gao, Naisheng</creatorcontrib><creatorcontrib>Shang, Di</creatorcontrib><creatorcontrib>Zhao, Guofang</creatorcontrib><creatorcontrib>Xin, Tao</creatorcontrib><title>Concordance Study of a 520-Gene Next-Generation Sequencing-Based Genomic Profiling Assay of Tissue and Plasma Samples</title><title>Molecular diagnosis & therapy</title><addtitle>Mol Diagn Ther</addtitle><addtitle>Mol Diagn Ther</addtitle><description>Introduction
Next-generation sequencing (NGS) enables simultaneous detection of actionable somatic variants and estimation of genomic signatures such as tumor mutational burden (TMB) or microsatellite instability (MSI) status, which empowers therapeutic decisions in clinical oncology.
Objective
Our retrospective study investigated the clinical performance of somatic variant detection in paired tissue and blood samples using a large targeted gene panel, the OncoScreen Plus, which interrogates 520 cancer-related genes.
Methods
We analyzed sequencing data derived from paired tissue and blood samples of 3005 patients spanning 20 solid tumor types, including lung (
n
= 1971), gastrointestinal (
n
= 625), breast (
n
= 120) and gynecological (
n
= 110), genitourinary (
n
= 38), and other cancers (
n
= 141).
Results
Across tumor types, the OncoScreen Plus panel achieved a high tissue detection rate, with an average of 97.9%. The average plasma detection rate was 72.2%, with an average tissue concordance rate of 36.6%. Considering all variant types, the plasma assay yielded an average sensitivity/true positive rate of 45.7%, with a positive predictive value of 64.7% relative to tissue assay. Pearson correlation analysis revealed a strong correlation in TMB estimated from blood and tissue samples (correlation coefficient 0.845,
R
2
= 0.756). MSI-high status was identified in five tumor types, including endometrial cancer (28.6%), colorectal cancer (2.5%), ovarian cancer (2.0%), gastric cancer (1.5%), and lung adenocarcinoma (0.2%).
Conclusion
Paired tumor and blood samples from a large cohort of patients spanning 20 tumor types demonstrated that the OncoScreen Plus is a reliable pan-cancer panel for the accurate detection of somatic variants and genomic signatures that could guide individualized treatment strategies to improve the care of patients with advanced cancer.</description><subject>Adenocarcinoma</subject><subject>Assaying</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood</subject><subject>Breast</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Correlation analysis</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Endometrial cancer</subject><subject>Endometrium</subject><subject>Gastric cancer</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Laboratory Medicine</subject><subject>Lung cancer</subject><subject>Lungs</subject><subject>Medical laboratories</subject><subject>Microsatellite Instability</subject><subject>Molecular Medicine</subject><subject>Mutation</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - genetics</subject><subject>Next-generation sequencing</subject><subject>Original Research Article</subject><subject>Ovarian cancer</subject><subject>Patients</subject><subject>Pharmacotherapy</subject><subject>Plasma</subject><subject>Retrospective Studies</subject><subject>Signatures</subject><subject>Solid tumors</subject><subject>Tissue analysis</subject><subject>Tissues</subject><subject>Tumors</subject><issn>1177-1062</issn><issn>1179-2000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kFtPAyEQhYnRWG9_wAdD4jM6wALuY228JUZNqs-EstBs04UKu4n992Lr5c2nOZk5cwY-hE4pXFAAdZkrYDUlwBgBEKomdAcdUFoEA4DdjVaEgmQjdJjzAqASsmb7aMQFB8EEP0DDJAYbU2OCdXjaD80aR48NFgzInQsOP7mPfqOS6dsY8NS9Dy7YNszJtcmuwWUWu9bilxR9uyx9PM7ZbGJe25wHh01o8MvS5M7gqelWS5eP0Z43y-xOvusReru9eZ3ck8fnu4fJ-JFYrkRPOLsyFXjlLZs1VioOTDWcWmYqJ0BVslLCA5fln1xI61RjQXrGZ4VB7a3nR-h8m7tKsTw793oRhxTKSc2kFFTJuqqKi21dNsWck_N6ldrOpLWmoL9I6y1pXUjrDWlNy9LZd_Qw61zzu_KDthj41pDLKMxd-rv9T-wnpO6Htw</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Wang, Minghui</creator><creator>Chen, Xianshan</creator><creator>Dai, Yongmei</creator><creator>Wu, Duoguang</creator><creator>Liu, Fang</creator><creator>Yang, Zheng</creator><creator>Song, Baozhi</creator><creator>Xie, Li</creator><creator>Yang, Liangwei</creator><creator>Zhao, Weidi</creator><creator>Zhang, Chenxu</creator><creator>Shen, Weixi</creator><creator>Fan, Chengjuan</creator><creator>Teng, Chong</creator><creator>Zhao, Xue</creator><creator>Gao, Naisheng</creator><creator>Shang, Di</creator><creator>Zhao, Guofang</creator><creator>Xin, Tao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7747-4269</orcidid></search><sort><creationdate>20220501</creationdate><title>Concordance Study of a 520-Gene Next-Generation Sequencing-Based Genomic Profiling Assay of Tissue and Plasma Samples</title><author>Wang, Minghui ; Chen, Xianshan ; Dai, Yongmei ; Wu, Duoguang ; Liu, Fang ; Yang, Zheng ; Song, Baozhi ; Xie, Li ; Yang, Liangwei ; Zhao, Weidi ; Zhang, Chenxu ; Shen, Weixi ; Fan, Chengjuan ; Teng, Chong ; Zhao, Xue ; Gao, Naisheng ; Shang, Di ; Zhao, Guofang ; Xin, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-328a40f7fc2bdc673027d31c2a4e50746475f036117356ce7dc06f23b1799fcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenocarcinoma</topic><topic>Assaying</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood</topic><topic>Breast</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Correlation analysis</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Endometrial cancer</topic><topic>Endometrium</topic><topic>Gastric cancer</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Laboratory Medicine</topic><topic>Lung cancer</topic><topic>Lungs</topic><topic>Medical laboratories</topic><topic>Microsatellite Instability</topic><topic>Molecular Medicine</topic><topic>Mutation</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - genetics</topic><topic>Next-generation sequencing</topic><topic>Original Research Article</topic><topic>Ovarian cancer</topic><topic>Patients</topic><topic>Pharmacotherapy</topic><topic>Plasma</topic><topic>Retrospective Studies</topic><topic>Signatures</topic><topic>Solid tumors</topic><topic>Tissue analysis</topic><topic>Tissues</topic><topic>Tumors</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Minghui</creatorcontrib><creatorcontrib>Chen, Xianshan</creatorcontrib><creatorcontrib>Dai, Yongmei</creatorcontrib><creatorcontrib>Wu, Duoguang</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Yang, Zheng</creatorcontrib><creatorcontrib>Song, Baozhi</creatorcontrib><creatorcontrib>Xie, Li</creatorcontrib><creatorcontrib>Yang, Liangwei</creatorcontrib><creatorcontrib>Zhao, Weidi</creatorcontrib><creatorcontrib>Zhang, Chenxu</creatorcontrib><creatorcontrib>Shen, Weixi</creatorcontrib><creatorcontrib>Fan, Chengjuan</creatorcontrib><creatorcontrib>Teng, Chong</creatorcontrib><creatorcontrib>Zhao, Xue</creatorcontrib><creatorcontrib>Gao, Naisheng</creatorcontrib><creatorcontrib>Shang, Di</creatorcontrib><creatorcontrib>Zhao, Guofang</creatorcontrib><creatorcontrib>Xin, Tao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Molecular diagnosis & therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Minghui</au><au>Chen, Xianshan</au><au>Dai, Yongmei</au><au>Wu, Duoguang</au><au>Liu, Fang</au><au>Yang, Zheng</au><au>Song, Baozhi</au><au>Xie, Li</au><au>Yang, Liangwei</au><au>Zhao, Weidi</au><au>Zhang, Chenxu</au><au>Shen, Weixi</au><au>Fan, Chengjuan</au><au>Teng, Chong</au><au>Zhao, Xue</au><au>Gao, Naisheng</au><au>Shang, Di</au><au>Zhao, Guofang</au><au>Xin, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concordance Study of a 520-Gene Next-Generation Sequencing-Based Genomic Profiling Assay of Tissue and Plasma Samples</atitle><jtitle>Molecular diagnosis & therapy</jtitle><stitle>Mol Diagn Ther</stitle><addtitle>Mol Diagn Ther</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>26</volume><issue>3</issue><spage>309</spage><epage>322</epage><pages>309-322</pages><issn>1177-1062</issn><eissn>1179-2000</eissn><abstract>Introduction
Next-generation sequencing (NGS) enables simultaneous detection of actionable somatic variants and estimation of genomic signatures such as tumor mutational burden (TMB) or microsatellite instability (MSI) status, which empowers therapeutic decisions in clinical oncology.
Objective
Our retrospective study investigated the clinical performance of somatic variant detection in paired tissue and blood samples using a large targeted gene panel, the OncoScreen Plus, which interrogates 520 cancer-related genes.
Methods
We analyzed sequencing data derived from paired tissue and blood samples of 3005 patients spanning 20 solid tumor types, including lung (
n
= 1971), gastrointestinal (
n
= 625), breast (
n
= 120) and gynecological (
n
= 110), genitourinary (
n
= 38), and other cancers (
n
= 141).
Results
Across tumor types, the OncoScreen Plus panel achieved a high tissue detection rate, with an average of 97.9%. The average plasma detection rate was 72.2%, with an average tissue concordance rate of 36.6%. Considering all variant types, the plasma assay yielded an average sensitivity/true positive rate of 45.7%, with a positive predictive value of 64.7% relative to tissue assay. Pearson correlation analysis revealed a strong correlation in TMB estimated from blood and tissue samples (correlation coefficient 0.845,
R
2
= 0.756). MSI-high status was identified in five tumor types, including endometrial cancer (28.6%), colorectal cancer (2.5%), ovarian cancer (2.0%), gastric cancer (1.5%), and lung adenocarcinoma (0.2%).
Conclusion
Paired tumor and blood samples from a large cohort of patients spanning 20 tumor types demonstrated that the OncoScreen Plus is a reliable pan-cancer panel for the accurate detection of somatic variants and genomic signatures that could guide individualized treatment strategies to improve the care of patients with advanced cancer.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>35305253</pmid><doi>10.1007/s40291-022-00579-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7747-4269</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1177-1062 |
ispartof | Molecular diagnosis & therapy, 2022-05, Vol.26 (3), p.309-322 |
issn | 1177-1062 1179-2000 |
language | eng |
recordid | cdi_proquest_journals_2665176944 |
source | MEDLINE; Springer Online Journals |
subjects | Adenocarcinoma Assaying Biomarkers Biomarkers, Tumor - genetics Biomedical and Life Sciences Biomedicine Blood Breast Cancer Cancer Research Colorectal cancer Colorectal carcinoma Correlation analysis Correlation coefficient Correlation coefficients Endometrial cancer Endometrium Gastric cancer Gene sequencing Genes Genomes Genomics High-Throughput Nucleotide Sequencing Human Genetics Humans Immunotherapy Laboratory Medicine Lung cancer Lungs Medical laboratories Microsatellite Instability Molecular Medicine Mutation Neoplasms - diagnosis Neoplasms - genetics Next-generation sequencing Original Research Article Ovarian cancer Patients Pharmacotherapy Plasma Retrospective Studies Signatures Solid tumors Tissue analysis Tissues Tumors |
title | Concordance Study of a 520-Gene Next-Generation Sequencing-Based Genomic Profiling Assay of Tissue and Plasma Samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concordance%20Study%20of%20a%20520-Gene%20Next-Generation%20Sequencing-Based%20Genomic%20Profiling%20Assay%20of%20Tissue%20and%20Plasma%20Samples&rft.jtitle=Molecular%20diagnosis%20&%20therapy&rft.au=Wang,%20Minghui&rft.date=2022-05-01&rft.volume=26&rft.issue=3&rft.spage=309&rft.epage=322&rft.pages=309-322&rft.issn=1177-1062&rft.eissn=1179-2000&rft_id=info:doi/10.1007/s40291-022-00579-1&rft_dat=%3Cproquest_cross%3E2665176944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665176944&rft_id=info:pmid/35305253&rfr_iscdi=true |