Power management in hybrid electric vehicles using deep recurrent reinforcement learning
A power management framework for hybrid electric vehicles (HEVs) is proposed based on deep reinforcement learning (DRL) with a Long Short-Term Memory (LSTM) network to minimize the fuel consumption through determining the power distribution between the two propulsion sources, the internal combustion...
Gespeichert in:
Veröffentlicht in: | Electrical engineering 2022-06, Vol.104 (3), p.1459-1471 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1471 |
---|---|
container_issue | 3 |
container_start_page | 1459 |
container_title | Electrical engineering |
container_volume | 104 |
creator | Sun, Mengshu Zhao, Pu Lin, Xue |
description | A power management framework for hybrid electric vehicles (HEVs) is proposed based on deep reinforcement learning (DRL) with a Long Short-Term Memory (LSTM) network to minimize the fuel consumption through determining the power distribution between the two propulsion sources, the internal combustion engine (ICE) and the electric motor (EM). DRL is effective for handling the high-dimensional state and action spaces in the HEV power management problem, and the LSTM structure leverages temporal dependencies of input information, providing internal state predictions automatically without introducing extra state variables. This technique is entirely online, meaning that the framework is constructed in real time during the training phase, independently of a prior knowledge of driving cycles. The learned information stored in the LSTM network is utilized efficiently, and the computational speed is enhanced by making multiple predictions simultaneously in each step. Simulation over various driving cycles demonstrates the efficacy of the proposed framework in fuel economy improvement. |
doi_str_mv | 10.1007/s00202-021-01401-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2665134974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665134974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4a47d4cee035b64853fc062f37bd1cd616704f3aa914f9a9fa17fd7db75d54463</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA82qyyW6aoxS_oKAHBW8hm0zaLdtsnXSV_ntTV_DmaWB4n3eGh5BLzq45Y-omMVaysmAlLxiXjBfqiEy4FHklZ-qYTJiWs0Lpkp-Ss5TWjDFRaTkh7y_9FyDd2GiXsIG4o22kq32DrafQgdth6-gnrFrXQaJDauOSeoAtRXAD4gFAaGPo0Y14BxZjTp2Tk2C7BBe_c0re7u9e54_F4vnhaX67KJzgeldIK5WXDiD_09RyVongWF0GoRrPna95rZgMwlrNZdBWB8tV8Mo3qvKVlLWYkquxd4v9xwBpZ9b9gDGfNGVdV1xIrWROlWPKYZ8SQjBbbDcW94YzczBoRoMmGzQ_Bo3KkBihlMNxCfhX_Q_1DTkOdK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665134974</pqid></control><display><type>article</type><title>Power management in hybrid electric vehicles using deep recurrent reinforcement learning</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sun, Mengshu ; Zhao, Pu ; Lin, Xue</creator><creatorcontrib>Sun, Mengshu ; Zhao, Pu ; Lin, Xue</creatorcontrib><description>A power management framework for hybrid electric vehicles (HEVs) is proposed based on deep reinforcement learning (DRL) with a Long Short-Term Memory (LSTM) network to minimize the fuel consumption through determining the power distribution between the two propulsion sources, the internal combustion engine (ICE) and the electric motor (EM). DRL is effective for handling the high-dimensional state and action spaces in the HEV power management problem, and the LSTM structure leverages temporal dependencies of input information, providing internal state predictions automatically without introducing extra state variables. This technique is entirely online, meaning that the framework is constructed in real time during the training phase, independently of a prior knowledge of driving cycles. The learned information stored in the LSTM network is utilized efficiently, and the computational speed is enhanced by making multiple predictions simultaneously in each step. Simulation over various driving cycles demonstrates the efficacy of the proposed framework in fuel economy improvement.</description><identifier>ISSN: 0948-7921</identifier><identifier>EISSN: 1432-0487</identifier><identifier>DOI: 10.1007/s00202-021-01401-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Deep learning ; Economics and Management ; Electric motors ; Electric power distribution ; Electric vehicles ; Electrical Engineering ; Electrical Machines and Networks ; Energy Policy ; Engineering ; Fuel consumption ; Fuel economy ; Hybrid electric vehicles ; Internal combustion engines ; Original Paper ; Power consumption ; Power Electronics ; Power management</subject><ispartof>Electrical engineering, 2022-06, Vol.104 (3), p.1459-1471</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4a47d4cee035b64853fc062f37bd1cd616704f3aa914f9a9fa17fd7db75d54463</citedby><cites>FETCH-LOGICAL-c319t-4a47d4cee035b64853fc062f37bd1cd616704f3aa914f9a9fa17fd7db75d54463</cites><orcidid>0000-0003-3540-1464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00202-021-01401-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00202-021-01401-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sun, Mengshu</creatorcontrib><creatorcontrib>Zhao, Pu</creatorcontrib><creatorcontrib>Lin, Xue</creatorcontrib><title>Power management in hybrid electric vehicles using deep recurrent reinforcement learning</title><title>Electrical engineering</title><addtitle>Electr Eng</addtitle><description>A power management framework for hybrid electric vehicles (HEVs) is proposed based on deep reinforcement learning (DRL) with a Long Short-Term Memory (LSTM) network to minimize the fuel consumption through determining the power distribution between the two propulsion sources, the internal combustion engine (ICE) and the electric motor (EM). DRL is effective for handling the high-dimensional state and action spaces in the HEV power management problem, and the LSTM structure leverages temporal dependencies of input information, providing internal state predictions automatically without introducing extra state variables. This technique is entirely online, meaning that the framework is constructed in real time during the training phase, independently of a prior knowledge of driving cycles. The learned information stored in the LSTM network is utilized efficiently, and the computational speed is enhanced by making multiple predictions simultaneously in each step. Simulation over various driving cycles demonstrates the efficacy of the proposed framework in fuel economy improvement.</description><subject>Deep learning</subject><subject>Economics and Management</subject><subject>Electric motors</subject><subject>Electric power distribution</subject><subject>Electric vehicles</subject><subject>Electrical Engineering</subject><subject>Electrical Machines and Networks</subject><subject>Energy Policy</subject><subject>Engineering</subject><subject>Fuel consumption</subject><subject>Fuel economy</subject><subject>Hybrid electric vehicles</subject><subject>Internal combustion engines</subject><subject>Original Paper</subject><subject>Power consumption</subject><subject>Power Electronics</subject><subject>Power management</subject><issn>0948-7921</issn><issn>1432-0487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA82qyyW6aoxS_oKAHBW8hm0zaLdtsnXSV_ntTV_DmaWB4n3eGh5BLzq45Y-omMVaysmAlLxiXjBfqiEy4FHklZ-qYTJiWs0Lpkp-Ss5TWjDFRaTkh7y_9FyDd2GiXsIG4o22kq32DrafQgdth6-gnrFrXQaJDauOSeoAtRXAD4gFAaGPo0Y14BxZjTp2Tk2C7BBe_c0re7u9e54_F4vnhaX67KJzgeldIK5WXDiD_09RyVongWF0GoRrPna95rZgMwlrNZdBWB8tV8Mo3qvKVlLWYkquxd4v9xwBpZ9b9gDGfNGVdV1xIrWROlWPKYZ8SQjBbbDcW94YzczBoRoMmGzQ_Bo3KkBihlMNxCfhX_Q_1DTkOdK8</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Sun, Mengshu</creator><creator>Zhao, Pu</creator><creator>Lin, Xue</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3540-1464</orcidid></search><sort><creationdate>20220601</creationdate><title>Power management in hybrid electric vehicles using deep recurrent reinforcement learning</title><author>Sun, Mengshu ; Zhao, Pu ; Lin, Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4a47d4cee035b64853fc062f37bd1cd616704f3aa914f9a9fa17fd7db75d54463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deep learning</topic><topic>Economics and Management</topic><topic>Electric motors</topic><topic>Electric power distribution</topic><topic>Electric vehicles</topic><topic>Electrical Engineering</topic><topic>Electrical Machines and Networks</topic><topic>Energy Policy</topic><topic>Engineering</topic><topic>Fuel consumption</topic><topic>Fuel economy</topic><topic>Hybrid electric vehicles</topic><topic>Internal combustion engines</topic><topic>Original Paper</topic><topic>Power consumption</topic><topic>Power Electronics</topic><topic>Power management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Mengshu</creatorcontrib><creatorcontrib>Zhao, Pu</creatorcontrib><creatorcontrib>Lin, Xue</creatorcontrib><collection>CrossRef</collection><jtitle>Electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Mengshu</au><au>Zhao, Pu</au><au>Lin, Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power management in hybrid electric vehicles using deep recurrent reinforcement learning</atitle><jtitle>Electrical engineering</jtitle><stitle>Electr Eng</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>104</volume><issue>3</issue><spage>1459</spage><epage>1471</epage><pages>1459-1471</pages><issn>0948-7921</issn><eissn>1432-0487</eissn><abstract>A power management framework for hybrid electric vehicles (HEVs) is proposed based on deep reinforcement learning (DRL) with a Long Short-Term Memory (LSTM) network to minimize the fuel consumption through determining the power distribution between the two propulsion sources, the internal combustion engine (ICE) and the electric motor (EM). DRL is effective for handling the high-dimensional state and action spaces in the HEV power management problem, and the LSTM structure leverages temporal dependencies of input information, providing internal state predictions automatically without introducing extra state variables. This technique is entirely online, meaning that the framework is constructed in real time during the training phase, independently of a prior knowledge of driving cycles. The learned information stored in the LSTM network is utilized efficiently, and the computational speed is enhanced by making multiple predictions simultaneously in each step. Simulation over various driving cycles demonstrates the efficacy of the proposed framework in fuel economy improvement.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00202-021-01401-7</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3540-1464</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0948-7921 |
ispartof | Electrical engineering, 2022-06, Vol.104 (3), p.1459-1471 |
issn | 0948-7921 1432-0487 |
language | eng |
recordid | cdi_proquest_journals_2665134974 |
source | SpringerLink Journals - AutoHoldings |
subjects | Deep learning Economics and Management Electric motors Electric power distribution Electric vehicles Electrical Engineering Electrical Machines and Networks Energy Policy Engineering Fuel consumption Fuel economy Hybrid electric vehicles Internal combustion engines Original Paper Power consumption Power Electronics Power management |
title | Power management in hybrid electric vehicles using deep recurrent reinforcement learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20management%20in%20hybrid%20electric%20vehicles%20using%20deep%20recurrent%20reinforcement%20learning&rft.jtitle=Electrical%20engineering&rft.au=Sun,%20Mengshu&rft.date=2022-06-01&rft.volume=104&rft.issue=3&rft.spage=1459&rft.epage=1471&rft.pages=1459-1471&rft.issn=0948-7921&rft.eissn=1432-0487&rft_id=info:doi/10.1007/s00202-021-01401-7&rft_dat=%3Cproquest_cross%3E2665134974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665134974&rft_id=info:pmid/&rfr_iscdi=true |