Deep learning-based microexpression recognition: a survey
With the recent development of microexpression recognition, deep learning (DL) has been widely applied in this field. In this paper, we provide a comprehensive survey of the current DL-based microexpression (ME) recognition methods. In addition, we introduce a novel dataset based on fusing all the e...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2022-06, Vol.34 (12), p.9537-9560 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9560 |
---|---|
container_issue | 12 |
container_start_page | 9537 |
container_title | Neural computing & applications |
container_volume | 34 |
creator | Gong, Wenjuan An, Zhihong Elfiky, Noha M. |
description | With the recent development of microexpression recognition, deep learning (DL) has been widely applied in this field. In this paper, we provide a comprehensive survey of the current DL-based microexpression (ME) recognition methods. In addition, we introduce a novel dataset based on fusing all the existing ME datasets. We also evaluate a baseline DL for the microexpression recognition task. Finally, we make the new dataset and the code publicly available to the community at
https://github.com/wenjgong/microExpressionSurvey
. |
doi_str_mv | 10.1007/s00521-022-07157-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2664957445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664957445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-68cf57e6dc391e7e01bfe88dce124d4da8abe01c784911beda5fa7127b6ee1cb3</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThV4hxw_qfc0GCANIkLnKM0dadOW1uSjbFvT6BI3DjZst97tn6EXDK4ZgDmJgEozihwTsEwZej-iEyYFIIKUPaYTKCUea2lOCVnKa0AQGqrJqS8RxyKNfrYtd2SVj5hXWzaEHv8HCKm1PZdETH0y67d5v628EXaxQ88nJOTxq8TXvzWKXmbP7zOnuji5fF5dregQbByS7UNjTKo6yBKhgaBVQ1aWwdkXNay9tZXeRiMlSVjFdZeNd4wbiqNyEIlpuRqzB1i_77DtHWrfhe7fNJxrWWpjJQqq_ioyp-nFLFxQ2w3Ph4cA_eNyI2IXEbkfhC5fTaJ0ZSyuFti_Iv-x_UF-b9qyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664957445</pqid></control><display><type>article</type><title>Deep learning-based microexpression recognition: a survey</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gong, Wenjuan ; An, Zhihong ; Elfiky, Noha M.</creator><creatorcontrib>Gong, Wenjuan ; An, Zhihong ; Elfiky, Noha M.</creatorcontrib><description>With the recent development of microexpression recognition, deep learning (DL) has been widely applied in this field. In this paper, we provide a comprehensive survey of the current DL-based microexpression (ME) recognition methods. In addition, we introduce a novel dataset based on fusing all the existing ME datasets. We also evaluate a baseline DL for the microexpression recognition task. Finally, we make the new dataset and the code publicly available to the community at
https://github.com/wenjgong/microExpressionSurvey
.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07157-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Datasets ; Deep learning ; Image Processing and Computer Vision ; Probability and Statistics in Computer Science ; Recognition ; Review</subject><ispartof>Neural computing & applications, 2022-06, Vol.34 (12), p.9537-9560</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-68cf57e6dc391e7e01bfe88dce124d4da8abe01c784911beda5fa7127b6ee1cb3</citedby><cites>FETCH-LOGICAL-c319t-68cf57e6dc391e7e01bfe88dce124d4da8abe01c784911beda5fa7127b6ee1cb3</cites><orcidid>0000-0001-7805-3629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-022-07157-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-022-07157-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gong, Wenjuan</creatorcontrib><creatorcontrib>An, Zhihong</creatorcontrib><creatorcontrib>Elfiky, Noha M.</creatorcontrib><title>Deep learning-based microexpression recognition: a survey</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>With the recent development of microexpression recognition, deep learning (DL) has been widely applied in this field. In this paper, we provide a comprehensive survey of the current DL-based microexpression (ME) recognition methods. In addition, we introduce a novel dataset based on fusing all the existing ME datasets. We also evaluate a baseline DL for the microexpression recognition task. Finally, we make the new dataset and the code publicly available to the community at
https://github.com/wenjgong/microExpressionSurvey
.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Image Processing and Computer Vision</subject><subject>Probability and Statistics in Computer Science</subject><subject>Recognition</subject><subject>Review</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9PwzAMxSMEEmPwBThV4hxw_qfc0GCANIkLnKM0dadOW1uSjbFvT6BI3DjZst97tn6EXDK4ZgDmJgEozihwTsEwZej-iEyYFIIKUPaYTKCUea2lOCVnKa0AQGqrJqS8RxyKNfrYtd2SVj5hXWzaEHv8HCKm1PZdETH0y67d5v628EXaxQ88nJOTxq8TXvzWKXmbP7zOnuji5fF5dregQbByS7UNjTKo6yBKhgaBVQ1aWwdkXNay9tZXeRiMlSVjFdZeNd4wbiqNyEIlpuRqzB1i_77DtHWrfhe7fNJxrWWpjJQqq_ioyp-nFLFxQ2w3Ph4cA_eNyI2IXEbkfhC5fTaJ0ZSyuFti_Iv-x_UF-b9qyA</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Gong, Wenjuan</creator><creator>An, Zhihong</creator><creator>Elfiky, Noha M.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7805-3629</orcidid></search><sort><creationdate>20220601</creationdate><title>Deep learning-based microexpression recognition: a survey</title><author>Gong, Wenjuan ; An, Zhihong ; Elfiky, Noha M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-68cf57e6dc391e7e01bfe88dce124d4da8abe01c784911beda5fa7127b6ee1cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Image Processing and Computer Vision</topic><topic>Probability and Statistics in Computer Science</topic><topic>Recognition</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Wenjuan</creatorcontrib><creatorcontrib>An, Zhihong</creatorcontrib><creatorcontrib>Elfiky, Noha M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Wenjuan</au><au>An, Zhihong</au><au>Elfiky, Noha M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning-based microexpression recognition: a survey</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>34</volume><issue>12</issue><spage>9537</spage><epage>9560</epage><pages>9537-9560</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>With the recent development of microexpression recognition, deep learning (DL) has been widely applied in this field. In this paper, we provide a comprehensive survey of the current DL-based microexpression (ME) recognition methods. In addition, we introduce a novel dataset based on fusing all the existing ME datasets. We also evaluate a baseline DL for the microexpression recognition task. Finally, we make the new dataset and the code publicly available to the community at
https://github.com/wenjgong/microExpressionSurvey
.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07157-w</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-7805-3629</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2022-06, Vol.34 (12), p.9537-9560 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2664957445 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Datasets Deep learning Image Processing and Computer Vision Probability and Statistics in Computer Science Recognition Review |
title | Deep learning-based microexpression recognition: a survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning-based%20microexpression%20recognition:%20a%20survey&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Gong,%20Wenjuan&rft.date=2022-06-01&rft.volume=34&rft.issue=12&rft.spage=9537&rft.epage=9560&rft.pages=9537-9560&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07157-w&rft_dat=%3Cproquest_cross%3E2664957445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664957445&rft_id=info:pmid/&rfr_iscdi=true |