Deep learning-based microexpression recognition: a survey

With the recent development of microexpression recognition, deep learning (DL) has been widely applied in this field. In this paper, we provide a comprehensive survey of the current DL-based microexpression (ME) recognition methods. In addition, we introduce a novel dataset based on fusing all the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2022-06, Vol.34 (12), p.9537-9560
Hauptverfasser: Gong, Wenjuan, An, Zhihong, Elfiky, Noha M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9560
container_issue 12
container_start_page 9537
container_title Neural computing & applications
container_volume 34
creator Gong, Wenjuan
An, Zhihong
Elfiky, Noha M.
description With the recent development of microexpression recognition, deep learning (DL) has been widely applied in this field. In this paper, we provide a comprehensive survey of the current DL-based microexpression (ME) recognition methods. In addition, we introduce a novel dataset based on fusing all the existing ME datasets. We also evaluate a baseline DL for the microexpression recognition task. Finally, we make the new dataset and the code publicly available to the community at https://github.com/wenjgong/microExpressionSurvey .
doi_str_mv 10.1007/s00521-022-07157-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2664957445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664957445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-68cf57e6dc391e7e01bfe88dce124d4da8abe01c784911beda5fa7127b6ee1cb3</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThV4hxw_qfc0GCANIkLnKM0dadOW1uSjbFvT6BI3DjZst97tn6EXDK4ZgDmJgEozihwTsEwZej-iEyYFIIKUPaYTKCUea2lOCVnKa0AQGqrJqS8RxyKNfrYtd2SVj5hXWzaEHv8HCKm1PZdETH0y67d5v628EXaxQ88nJOTxq8TXvzWKXmbP7zOnuji5fF5dregQbByS7UNjTKo6yBKhgaBVQ1aWwdkXNay9tZXeRiMlSVjFdZeNd4wbiqNyEIlpuRqzB1i_77DtHWrfhe7fNJxrWWpjJQqq_ioyp-nFLFxQ2w3Ph4cA_eNyI2IXEbkfhC5fTaJ0ZSyuFti_Iv-x_UF-b9qyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664957445</pqid></control><display><type>article</type><title>Deep learning-based microexpression recognition: a survey</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gong, Wenjuan ; An, Zhihong ; Elfiky, Noha M.</creator><creatorcontrib>Gong, Wenjuan ; An, Zhihong ; Elfiky, Noha M.</creatorcontrib><description>With the recent development of microexpression recognition, deep learning (DL) has been widely applied in this field. In this paper, we provide a comprehensive survey of the current DL-based microexpression (ME) recognition methods. In addition, we introduce a novel dataset based on fusing all the existing ME datasets. We also evaluate a baseline DL for the microexpression recognition task. Finally, we make the new dataset and the code publicly available to the community at https://github.com/wenjgong/microExpressionSurvey .</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07157-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Datasets ; Deep learning ; Image Processing and Computer Vision ; Probability and Statistics in Computer Science ; Recognition ; Review</subject><ispartof>Neural computing &amp; applications, 2022-06, Vol.34 (12), p.9537-9560</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-68cf57e6dc391e7e01bfe88dce124d4da8abe01c784911beda5fa7127b6ee1cb3</citedby><cites>FETCH-LOGICAL-c319t-68cf57e6dc391e7e01bfe88dce124d4da8abe01c784911beda5fa7127b6ee1cb3</cites><orcidid>0000-0001-7805-3629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-022-07157-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-022-07157-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gong, Wenjuan</creatorcontrib><creatorcontrib>An, Zhihong</creatorcontrib><creatorcontrib>Elfiky, Noha M.</creatorcontrib><title>Deep learning-based microexpression recognition: a survey</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>With the recent development of microexpression recognition, deep learning (DL) has been widely applied in this field. In this paper, we provide a comprehensive survey of the current DL-based microexpression (ME) recognition methods. In addition, we introduce a novel dataset based on fusing all the existing ME datasets. We also evaluate a baseline DL for the microexpression recognition task. Finally, we make the new dataset and the code publicly available to the community at https://github.com/wenjgong/microExpressionSurvey .</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Image Processing and Computer Vision</subject><subject>Probability and Statistics in Computer Science</subject><subject>Recognition</subject><subject>Review</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9PwzAMxSMEEmPwBThV4hxw_qfc0GCANIkLnKM0dadOW1uSjbFvT6BI3DjZst97tn6EXDK4ZgDmJgEozihwTsEwZej-iEyYFIIKUPaYTKCUea2lOCVnKa0AQGqrJqS8RxyKNfrYtd2SVj5hXWzaEHv8HCKm1PZdETH0y67d5v628EXaxQ88nJOTxq8TXvzWKXmbP7zOnuji5fF5dregQbByS7UNjTKo6yBKhgaBVQ1aWwdkXNay9tZXeRiMlSVjFdZeNd4wbiqNyEIlpuRqzB1i_77DtHWrfhe7fNJxrWWpjJQqq_ioyp-nFLFxQ2w3Ph4cA_eNyI2IXEbkfhC5fTaJ0ZSyuFti_Iv-x_UF-b9qyA</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Gong, Wenjuan</creator><creator>An, Zhihong</creator><creator>Elfiky, Noha M.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7805-3629</orcidid></search><sort><creationdate>20220601</creationdate><title>Deep learning-based microexpression recognition: a survey</title><author>Gong, Wenjuan ; An, Zhihong ; Elfiky, Noha M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-68cf57e6dc391e7e01bfe88dce124d4da8abe01c784911beda5fa7127b6ee1cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Image Processing and Computer Vision</topic><topic>Probability and Statistics in Computer Science</topic><topic>Recognition</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Wenjuan</creatorcontrib><creatorcontrib>An, Zhihong</creatorcontrib><creatorcontrib>Elfiky, Noha M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Wenjuan</au><au>An, Zhihong</au><au>Elfiky, Noha M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning-based microexpression recognition: a survey</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>34</volume><issue>12</issue><spage>9537</spage><epage>9560</epage><pages>9537-9560</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>With the recent development of microexpression recognition, deep learning (DL) has been widely applied in this field. In this paper, we provide a comprehensive survey of the current DL-based microexpression (ME) recognition methods. In addition, we introduce a novel dataset based on fusing all the existing ME datasets. We also evaluate a baseline DL for the microexpression recognition task. Finally, we make the new dataset and the code publicly available to the community at https://github.com/wenjgong/microExpressionSurvey .</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07157-w</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-7805-3629</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2022-06, Vol.34 (12), p.9537-9560
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2664957445
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Datasets
Deep learning
Image Processing and Computer Vision
Probability and Statistics in Computer Science
Recognition
Review
title Deep learning-based microexpression recognition: a survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning-based%20microexpression%20recognition:%20a%20survey&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Gong,%20Wenjuan&rft.date=2022-06-01&rft.volume=34&rft.issue=12&rft.spage=9537&rft.epage=9560&rft.pages=9537-9560&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07157-w&rft_dat=%3Cproquest_cross%3E2664957445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664957445&rft_id=info:pmid/&rfr_iscdi=true