Detecting Rumours with Latency Guarantees using Massive Streaming Data
Today's social networks continuously generate massive streams of data, which provide a valuable starting point for the detection of rumours as soon as they start to propagate. However, rumour detection faces tight latency bounds, which cannot be met by contemporary algorithms, given the sheer v...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-05 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Thanh Tam Nguyen Huynh, Thanh Trung Yin, Hongzhi Weidlich, Matthias Thanh Thi Nguyen Thai Son Mai Quoc Viet Hung Nguyen |
description | Today's social networks continuously generate massive streams of data, which provide a valuable starting point for the detection of rumours as soon as they start to propagate. However, rumour detection faces tight latency bounds, which cannot be met by contemporary algorithms, given the sheer volume of high-velocity streaming data emitted by social networks. Hence, in this paper, we argue for best-effort rumour detection that detects most rumours quickly rather than all rumours with a high delay. To this end, we combine techniques for efficient, graph-based matching of rumour patterns with effective load shedding that discards some of the input data while minimising the loss in accuracy. Experiments with large-scale real-world datasets illustrate the robustness of our approach in terms of runtime performance and detection accuracy under diverse streaming conditions. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2664951682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664951682</sourcerecordid><originalsourceid>FETCH-proquest_journals_26649516823</originalsourceid><addsrcrecordid>eNqNjMEKgkAURYcgSMp_GGgt6IxOts6sRW2qvTzkVUqONe9N0d9n0Ae0unDO4Y5EoLROojxVaiJCojaOY2UWKst0IMoCGWtu7EUefNd7R_LV8FXugNHWb7nx4MAyIklP32oPRM0T5ZEdQvclBTDMxPgMN8Lwt1MxL9en1Ta6u_7hkbhqh287qEoZky6zxORK_1d9ANu0O34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664951682</pqid></control><display><type>article</type><title>Detecting Rumours with Latency Guarantees using Massive Streaming Data</title><source>Free E- Journals</source><creator>Thanh Tam Nguyen ; Huynh, Thanh Trung ; Yin, Hongzhi ; Weidlich, Matthias ; Thanh Thi Nguyen ; Thai Son Mai ; Quoc Viet Hung Nguyen</creator><creatorcontrib>Thanh Tam Nguyen ; Huynh, Thanh Trung ; Yin, Hongzhi ; Weidlich, Matthias ; Thanh Thi Nguyen ; Thai Son Mai ; Quoc Viet Hung Nguyen</creatorcontrib><description>Today's social networks continuously generate massive streams of data, which provide a valuable starting point for the detection of rumours as soon as they start to propagate. However, rumour detection faces tight latency bounds, which cannot be met by contemporary algorithms, given the sheer volume of high-velocity streaming data emitted by social networks. Hence, in this paper, we argue for best-effort rumour detection that detects most rumours quickly rather than all rumours with a high delay. To this end, we combine techniques for efficient, graph-based matching of rumour patterns with effective load shedding that discards some of the input data while minimising the loss in accuracy. Experiments with large-scale real-world datasets illustrate the robustness of our approach in terms of runtime performance and detection accuracy under diverse streaming conditions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Graph matching ; Load shedding ; Social networks</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Thanh Tam Nguyen</creatorcontrib><creatorcontrib>Huynh, Thanh Trung</creatorcontrib><creatorcontrib>Yin, Hongzhi</creatorcontrib><creatorcontrib>Weidlich, Matthias</creatorcontrib><creatorcontrib>Thanh Thi Nguyen</creatorcontrib><creatorcontrib>Thai Son Mai</creatorcontrib><creatorcontrib>Quoc Viet Hung Nguyen</creatorcontrib><title>Detecting Rumours with Latency Guarantees using Massive Streaming Data</title><title>arXiv.org</title><description>Today's social networks continuously generate massive streams of data, which provide a valuable starting point for the detection of rumours as soon as they start to propagate. However, rumour detection faces tight latency bounds, which cannot be met by contemporary algorithms, given the sheer volume of high-velocity streaming data emitted by social networks. Hence, in this paper, we argue for best-effort rumour detection that detects most rumours quickly rather than all rumours with a high delay. To this end, we combine techniques for efficient, graph-based matching of rumour patterns with effective load shedding that discards some of the input data while minimising the loss in accuracy. Experiments with large-scale real-world datasets illustrate the robustness of our approach in terms of runtime performance and detection accuracy under diverse streaming conditions.</description><subject>Algorithms</subject><subject>Graph matching</subject><subject>Load shedding</subject><subject>Social networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMEKgkAURYcgSMp_GGgt6IxOts6sRW2qvTzkVUqONe9N0d9n0Ae0unDO4Y5EoLROojxVaiJCojaOY2UWKst0IMoCGWtu7EUefNd7R_LV8FXugNHWb7nx4MAyIklP32oPRM0T5ZEdQvclBTDMxPgMN8Lwt1MxL9en1Ta6u_7hkbhqh287qEoZky6zxORK_1d9ANu0O34</recordid><startdate>20220513</startdate><enddate>20220513</enddate><creator>Thanh Tam Nguyen</creator><creator>Huynh, Thanh Trung</creator><creator>Yin, Hongzhi</creator><creator>Weidlich, Matthias</creator><creator>Thanh Thi Nguyen</creator><creator>Thai Son Mai</creator><creator>Quoc Viet Hung Nguyen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220513</creationdate><title>Detecting Rumours with Latency Guarantees using Massive Streaming Data</title><author>Thanh Tam Nguyen ; Huynh, Thanh Trung ; Yin, Hongzhi ; Weidlich, Matthias ; Thanh Thi Nguyen ; Thai Son Mai ; Quoc Viet Hung Nguyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26649516823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Graph matching</topic><topic>Load shedding</topic><topic>Social networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Thanh Tam Nguyen</creatorcontrib><creatorcontrib>Huynh, Thanh Trung</creatorcontrib><creatorcontrib>Yin, Hongzhi</creatorcontrib><creatorcontrib>Weidlich, Matthias</creatorcontrib><creatorcontrib>Thanh Thi Nguyen</creatorcontrib><creatorcontrib>Thai Son Mai</creatorcontrib><creatorcontrib>Quoc Viet Hung Nguyen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thanh Tam Nguyen</au><au>Huynh, Thanh Trung</au><au>Yin, Hongzhi</au><au>Weidlich, Matthias</au><au>Thanh Thi Nguyen</au><au>Thai Son Mai</au><au>Quoc Viet Hung Nguyen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Detecting Rumours with Latency Guarantees using Massive Streaming Data</atitle><jtitle>arXiv.org</jtitle><date>2022-05-13</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Today's social networks continuously generate massive streams of data, which provide a valuable starting point for the detection of rumours as soon as they start to propagate. However, rumour detection faces tight latency bounds, which cannot be met by contemporary algorithms, given the sheer volume of high-velocity streaming data emitted by social networks. Hence, in this paper, we argue for best-effort rumour detection that detects most rumours quickly rather than all rumours with a high delay. To this end, we combine techniques for efficient, graph-based matching of rumour patterns with effective load shedding that discards some of the input data while minimising the loss in accuracy. Experiments with large-scale real-world datasets illustrate the robustness of our approach in terms of runtime performance and detection accuracy under diverse streaming conditions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2664951682 |
source | Free E- Journals |
subjects | Algorithms Graph matching Load shedding Social networks |
title | Detecting Rumours with Latency Guarantees using Massive Streaming Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Detecting%20Rumours%20with%20Latency%20Guarantees%20using%20Massive%20Streaming%20Data&rft.jtitle=arXiv.org&rft.au=Thanh%20Tam%20Nguyen&rft.date=2022-05-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2664951682%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664951682&rft_id=info:pmid/&rfr_iscdi=true |