Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential

Substantial increases in shale gas production due to advances in hydraulic fracturing have created tremendous monetization and sustainable development opportunities, one of which is liquified natural gas (LNG). The International Maritime Organization (IMO) has targeted reducing greenhouse gas (GHG)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of chemical engineering 2022-06, Vol.100 (6), p.1178-1186
Hauptverfasser: Al‐Douri, Ahmad, Alsuhaibani, Abdulrahman S., Moore, Margaux, Nielsen, Rasmus B., El‐Baz, Amro A., El‐Halwagi, Mahmoud M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1186
container_issue 6
container_start_page 1178
container_title Canadian journal of chemical engineering
container_volume 100
creator Al‐Douri, Ahmad
Alsuhaibani, Abdulrahman S.
Moore, Margaux
Nielsen, Rasmus B.
El‐Baz, Amro A.
El‐Halwagi, Mahmoud M.
description Substantial increases in shale gas production due to advances in hydraulic fracturing have created tremendous monetization and sustainable development opportunities, one of which is liquified natural gas (LNG). The International Maritime Organization (IMO) has targeted reducing greenhouse gas (GHG) emissions from shipping by 50% by 2050. Conventional shipping fuels currently used are heavy fuel oil (HFO) and marine gas/diesel oil (MGO/MDO). There has been growing interest in using LNG as a shipping fuel because of its competitive cost, availability, and the presence of bunkering infrastructure. A thorough literature review of LNG life cycle GHG emissions shows variation depending on the following factors: shale gas extraction, pretreatment, pipeline transportation distance, liquefaction plant capacity/technology, and ship propulsion system. Compared to conventional fuels, LNG can reduce life cycle emissions up to 18%. Incorporating renewables‐based power generation in liquefaction can reduce emissions by a further 5%–10% (renewable‐assisted LNG). The reduction potential and economic effects of this modification on LNG cost are examined and it is shown that low wind‐based electricity prices can make renewable‐assisted LNG competitive. A comprehensive understanding of the factors impacting LNG emissions help identify the current and future potential of LNG in reducing shipping industry emissions and providing a short‐term transitional fuel until it is supplanted with decarbonized fuels. This paper also uses water‐energy nexus to examine the impact of responsible water management on the carbon footprint of LNG.
doi_str_mv 10.1002/cjce.24268
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2664943024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664943024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3018-8ccbb1137efdd6317bda45a102bbac34dc7eb3b431bb2a8cee46fabb34b8d5873</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsXf0HAm7A1X90Pb7LUqhS8KHgL-ZjVlDTbJrvI_nt3rWdhYBh45mXmQeiakgUlhN2ZrYEFEywvT9CMVrzKCK0-TtGMEFJmgnBxji5S2o4jI4LO0GEdAcJX2yfAnypBwrBzKbk2JOwC9u7Qu8aBxUF1fVR-gvBUeKeiC4CbHvw93rgGsBmMB6yC8kNyIxIsjmB7041peN92EDqn_CU6a5RPcPXX5-j9cfVWP2Wb1_Vz_bDJDCe0zEpjtKaUF9BYm3NaaKvEUlHCtFaGC2sK0FwLTrVmqjQAIm-U1lzo0i7Lgs_RzTF3H9tDD6mT27aP43FJsjwXleCEiZG6PVImtilFaOQ-uvG1QVIiJ6VyUip_lY4wPcLfzsPwDynrl3p13PkBxwV7cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664943024</pqid></control><display><type>article</type><title>Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential</title><source>Access via Wiley Online Library</source><creator>Al‐Douri, Ahmad ; Alsuhaibani, Abdulrahman S. ; Moore, Margaux ; Nielsen, Rasmus B. ; El‐Baz, Amro A. ; El‐Halwagi, Mahmoud M.</creator><creatorcontrib>Al‐Douri, Ahmad ; Alsuhaibani, Abdulrahman S. ; Moore, Margaux ; Nielsen, Rasmus B. ; El‐Baz, Amro A. ; El‐Halwagi, Mahmoud M.</creatorcontrib><description>Substantial increases in shale gas production due to advances in hydraulic fracturing have created tremendous monetization and sustainable development opportunities, one of which is liquified natural gas (LNG). The International Maritime Organization (IMO) has targeted reducing greenhouse gas (GHG) emissions from shipping by 50% by 2050. Conventional shipping fuels currently used are heavy fuel oil (HFO) and marine gas/diesel oil (MGO/MDO). There has been growing interest in using LNG as a shipping fuel because of its competitive cost, availability, and the presence of bunkering infrastructure. A thorough literature review of LNG life cycle GHG emissions shows variation depending on the following factors: shale gas extraction, pretreatment, pipeline transportation distance, liquefaction plant capacity/technology, and ship propulsion system. Compared to conventional fuels, LNG can reduce life cycle emissions up to 18%. Incorporating renewables‐based power generation in liquefaction can reduce emissions by a further 5%–10% (renewable‐assisted LNG). The reduction potential and economic effects of this modification on LNG cost are examined and it is shown that low wind‐based electricity prices can make renewable‐assisted LNG competitive. A comprehensive understanding of the factors impacting LNG emissions help identify the current and future potential of LNG in reducing shipping industry emissions and providing a short‐term transitional fuel until it is supplanted with decarbonized fuels. This paper also uses water‐energy nexus to examine the impact of responsible water management on the carbon footprint of LNG.</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.24268</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Bunkering ; Diesel fuels ; Economic impact ; Electricity pricing ; Electrode potentials ; Fuel oils ; Gas pipelines ; Gases ; Greenhouse gases ; Hydraulic fracturing ; Life cycle analysis ; life cycle emissions ; Liquefaction ; Liquefied natural gas ; liquified natural gas ; Literature reviews ; marine fuels ; Marine propulsion ; Marine transportation ; Natural gas ; Propulsion systems ; renewable‐assisted LNG ; Shale gas ; Shipping ; Shipping industry ; Sustainable development ; Water management</subject><ispartof>Canadian journal of chemical engineering, 2022-06, Vol.100 (6), p.1178-1186</ispartof><rights>2021 Canadian Society for Chemical Engineering.</rights><rights>2022 Canadian Society for Chemical Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3018-8ccbb1137efdd6317bda45a102bbac34dc7eb3b431bb2a8cee46fabb34b8d5873</citedby><cites>FETCH-LOGICAL-c3018-8ccbb1137efdd6317bda45a102bbac34dc7eb3b431bb2a8cee46fabb34b8d5873</cites><orcidid>0000-0002-0020-2281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjce.24268$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjce.24268$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Al‐Douri, Ahmad</creatorcontrib><creatorcontrib>Alsuhaibani, Abdulrahman S.</creatorcontrib><creatorcontrib>Moore, Margaux</creatorcontrib><creatorcontrib>Nielsen, Rasmus B.</creatorcontrib><creatorcontrib>El‐Baz, Amro A.</creatorcontrib><creatorcontrib>El‐Halwagi, Mahmoud M.</creatorcontrib><title>Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential</title><title>Canadian journal of chemical engineering</title><description>Substantial increases in shale gas production due to advances in hydraulic fracturing have created tremendous monetization and sustainable development opportunities, one of which is liquified natural gas (LNG). The International Maritime Organization (IMO) has targeted reducing greenhouse gas (GHG) emissions from shipping by 50% by 2050. Conventional shipping fuels currently used are heavy fuel oil (HFO) and marine gas/diesel oil (MGO/MDO). There has been growing interest in using LNG as a shipping fuel because of its competitive cost, availability, and the presence of bunkering infrastructure. A thorough literature review of LNG life cycle GHG emissions shows variation depending on the following factors: shale gas extraction, pretreatment, pipeline transportation distance, liquefaction plant capacity/technology, and ship propulsion system. Compared to conventional fuels, LNG can reduce life cycle emissions up to 18%. Incorporating renewables‐based power generation in liquefaction can reduce emissions by a further 5%–10% (renewable‐assisted LNG). The reduction potential and economic effects of this modification on LNG cost are examined and it is shown that low wind‐based electricity prices can make renewable‐assisted LNG competitive. A comprehensive understanding of the factors impacting LNG emissions help identify the current and future potential of LNG in reducing shipping industry emissions and providing a short‐term transitional fuel until it is supplanted with decarbonized fuels. This paper also uses water‐energy nexus to examine the impact of responsible water management on the carbon footprint of LNG.</description><subject>Bunkering</subject><subject>Diesel fuels</subject><subject>Economic impact</subject><subject>Electricity pricing</subject><subject>Electrode potentials</subject><subject>Fuel oils</subject><subject>Gas pipelines</subject><subject>Gases</subject><subject>Greenhouse gases</subject><subject>Hydraulic fracturing</subject><subject>Life cycle analysis</subject><subject>life cycle emissions</subject><subject>Liquefaction</subject><subject>Liquefied natural gas</subject><subject>liquified natural gas</subject><subject>Literature reviews</subject><subject>marine fuels</subject><subject>Marine propulsion</subject><subject>Marine transportation</subject><subject>Natural gas</subject><subject>Propulsion systems</subject><subject>renewable‐assisted LNG</subject><subject>Shale gas</subject><subject>Shipping</subject><subject>Shipping industry</subject><subject>Sustainable development</subject><subject>Water management</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsXf0HAm7A1X90Pb7LUqhS8KHgL-ZjVlDTbJrvI_nt3rWdhYBh45mXmQeiakgUlhN2ZrYEFEywvT9CMVrzKCK0-TtGMEFJmgnBxji5S2o4jI4LO0GEdAcJX2yfAnypBwrBzKbk2JOwC9u7Qu8aBxUF1fVR-gvBUeKeiC4CbHvw93rgGsBmMB6yC8kNyIxIsjmB7041peN92EDqn_CU6a5RPcPXX5-j9cfVWP2Wb1_Vz_bDJDCe0zEpjtKaUF9BYm3NaaKvEUlHCtFaGC2sK0FwLTrVmqjQAIm-U1lzo0i7Lgs_RzTF3H9tDD6mT27aP43FJsjwXleCEiZG6PVImtilFaOQ-uvG1QVIiJ6VyUip_lY4wPcLfzsPwDynrl3p13PkBxwV7cg</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Al‐Douri, Ahmad</creator><creator>Alsuhaibani, Abdulrahman S.</creator><creator>Moore, Margaux</creator><creator>Nielsen, Rasmus B.</creator><creator>El‐Baz, Amro A.</creator><creator>El‐Halwagi, Mahmoud M.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0020-2281</orcidid></search><sort><creationdate>202206</creationdate><title>Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential</title><author>Al‐Douri, Ahmad ; Alsuhaibani, Abdulrahman S. ; Moore, Margaux ; Nielsen, Rasmus B. ; El‐Baz, Amro A. ; El‐Halwagi, Mahmoud M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3018-8ccbb1137efdd6317bda45a102bbac34dc7eb3b431bb2a8cee46fabb34b8d5873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bunkering</topic><topic>Diesel fuels</topic><topic>Economic impact</topic><topic>Electricity pricing</topic><topic>Electrode potentials</topic><topic>Fuel oils</topic><topic>Gas pipelines</topic><topic>Gases</topic><topic>Greenhouse gases</topic><topic>Hydraulic fracturing</topic><topic>Life cycle analysis</topic><topic>life cycle emissions</topic><topic>Liquefaction</topic><topic>Liquefied natural gas</topic><topic>liquified natural gas</topic><topic>Literature reviews</topic><topic>marine fuels</topic><topic>Marine propulsion</topic><topic>Marine transportation</topic><topic>Natural gas</topic><topic>Propulsion systems</topic><topic>renewable‐assisted LNG</topic><topic>Shale gas</topic><topic>Shipping</topic><topic>Shipping industry</topic><topic>Sustainable development</topic><topic>Water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al‐Douri, Ahmad</creatorcontrib><creatorcontrib>Alsuhaibani, Abdulrahman S.</creatorcontrib><creatorcontrib>Moore, Margaux</creatorcontrib><creatorcontrib>Nielsen, Rasmus B.</creatorcontrib><creatorcontrib>El‐Baz, Amro A.</creatorcontrib><creatorcontrib>El‐Halwagi, Mahmoud M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al‐Douri, Ahmad</au><au>Alsuhaibani, Abdulrahman S.</au><au>Moore, Margaux</au><au>Nielsen, Rasmus B.</au><au>El‐Baz, Amro A.</au><au>El‐Halwagi, Mahmoud M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential</atitle><jtitle>Canadian journal of chemical engineering</jtitle><date>2022-06</date><risdate>2022</risdate><volume>100</volume><issue>6</issue><spage>1178</spage><epage>1186</epage><pages>1178-1186</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><abstract>Substantial increases in shale gas production due to advances in hydraulic fracturing have created tremendous monetization and sustainable development opportunities, one of which is liquified natural gas (LNG). The International Maritime Organization (IMO) has targeted reducing greenhouse gas (GHG) emissions from shipping by 50% by 2050. Conventional shipping fuels currently used are heavy fuel oil (HFO) and marine gas/diesel oil (MGO/MDO). There has been growing interest in using LNG as a shipping fuel because of its competitive cost, availability, and the presence of bunkering infrastructure. A thorough literature review of LNG life cycle GHG emissions shows variation depending on the following factors: shale gas extraction, pretreatment, pipeline transportation distance, liquefaction plant capacity/technology, and ship propulsion system. Compared to conventional fuels, LNG can reduce life cycle emissions up to 18%. Incorporating renewables‐based power generation in liquefaction can reduce emissions by a further 5%–10% (renewable‐assisted LNG). The reduction potential and economic effects of this modification on LNG cost are examined and it is shown that low wind‐based electricity prices can make renewable‐assisted LNG competitive. A comprehensive understanding of the factors impacting LNG emissions help identify the current and future potential of LNG in reducing shipping industry emissions and providing a short‐term transitional fuel until it is supplanted with decarbonized fuels. This paper also uses water‐energy nexus to examine the impact of responsible water management on the carbon footprint of LNG.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cjce.24268</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0020-2281</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-4034
ispartof Canadian journal of chemical engineering, 2022-06, Vol.100 (6), p.1178-1186
issn 0008-4034
1939-019X
language eng
recordid cdi_proquest_journals_2664943024
source Access via Wiley Online Library
subjects Bunkering
Diesel fuels
Economic impact
Electricity pricing
Electrode potentials
Fuel oils
Gas pipelines
Gases
Greenhouse gases
Hydraulic fracturing
Life cycle analysis
life cycle emissions
Liquefaction
Liquefied natural gas
liquified natural gas
Literature reviews
marine fuels
Marine propulsion
Marine transportation
Natural gas
Propulsion systems
renewable‐assisted LNG
Shale gas
Shipping
Shipping industry
Sustainable development
Water management
title Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Greenhouse%20gases%20emissions%20in%20liquified%20natural%20gas%20as%20a%20marine%20fuel:%20Life%20cycle%20analysis%20and%20reduction%20potential&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Al%E2%80%90Douri,%20Ahmad&rft.date=2022-06&rft.volume=100&rft.issue=6&rft.spage=1178&rft.epage=1186&rft.pages=1178-1186&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002/cjce.24268&rft_dat=%3Cproquest_cross%3E2664943024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664943024&rft_id=info:pmid/&rfr_iscdi=true