Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential
Substantial increases in shale gas production due to advances in hydraulic fracturing have created tremendous monetization and sustainable development opportunities, one of which is liquified natural gas (LNG). The International Maritime Organization (IMO) has targeted reducing greenhouse gas (GHG)...
Gespeichert in:
Veröffentlicht in: | Canadian journal of chemical engineering 2022-06, Vol.100 (6), p.1178-1186 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1186 |
---|---|
container_issue | 6 |
container_start_page | 1178 |
container_title | Canadian journal of chemical engineering |
container_volume | 100 |
creator | Al‐Douri, Ahmad Alsuhaibani, Abdulrahman S. Moore, Margaux Nielsen, Rasmus B. El‐Baz, Amro A. El‐Halwagi, Mahmoud M. |
description | Substantial increases in shale gas production due to advances in hydraulic fracturing have created tremendous monetization and sustainable development opportunities, one of which is liquified natural gas (LNG). The International Maritime Organization (IMO) has targeted reducing greenhouse gas (GHG) emissions from shipping by 50% by 2050. Conventional shipping fuels currently used are heavy fuel oil (HFO) and marine gas/diesel oil (MGO/MDO). There has been growing interest in using LNG as a shipping fuel because of its competitive cost, availability, and the presence of bunkering infrastructure. A thorough literature review of LNG life cycle GHG emissions shows variation depending on the following factors: shale gas extraction, pretreatment, pipeline transportation distance, liquefaction plant capacity/technology, and ship propulsion system. Compared to conventional fuels, LNG can reduce life cycle emissions up to 18%. Incorporating renewables‐based power generation in liquefaction can reduce emissions by a further 5%–10% (renewable‐assisted LNG). The reduction potential and economic effects of this modification on LNG cost are examined and it is shown that low wind‐based electricity prices can make renewable‐assisted LNG competitive. A comprehensive understanding of the factors impacting LNG emissions help identify the current and future potential of LNG in reducing shipping industry emissions and providing a short‐term transitional fuel until it is supplanted with decarbonized fuels. This paper also uses water‐energy nexus to examine the impact of responsible water management on the carbon footprint of LNG. |
doi_str_mv | 10.1002/cjce.24268 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2664943024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664943024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3018-8ccbb1137efdd6317bda45a102bbac34dc7eb3b431bb2a8cee46fabb34b8d5873</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsXf0HAm7A1X90Pb7LUqhS8KHgL-ZjVlDTbJrvI_nt3rWdhYBh45mXmQeiakgUlhN2ZrYEFEywvT9CMVrzKCK0-TtGMEFJmgnBxji5S2o4jI4LO0GEdAcJX2yfAnypBwrBzKbk2JOwC9u7Qu8aBxUF1fVR-gvBUeKeiC4CbHvw93rgGsBmMB6yC8kNyIxIsjmB7041peN92EDqn_CU6a5RPcPXX5-j9cfVWP2Wb1_Vz_bDJDCe0zEpjtKaUF9BYm3NaaKvEUlHCtFaGC2sK0FwLTrVmqjQAIm-U1lzo0i7Lgs_RzTF3H9tDD6mT27aP43FJsjwXleCEiZG6PVImtilFaOQ-uvG1QVIiJ6VyUip_lY4wPcLfzsPwDynrl3p13PkBxwV7cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664943024</pqid></control><display><type>article</type><title>Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential</title><source>Access via Wiley Online Library</source><creator>Al‐Douri, Ahmad ; Alsuhaibani, Abdulrahman S. ; Moore, Margaux ; Nielsen, Rasmus B. ; El‐Baz, Amro A. ; El‐Halwagi, Mahmoud M.</creator><creatorcontrib>Al‐Douri, Ahmad ; Alsuhaibani, Abdulrahman S. ; Moore, Margaux ; Nielsen, Rasmus B. ; El‐Baz, Amro A. ; El‐Halwagi, Mahmoud M.</creatorcontrib><description>Substantial increases in shale gas production due to advances in hydraulic fracturing have created tremendous monetization and sustainable development opportunities, one of which is liquified natural gas (LNG). The International Maritime Organization (IMO) has targeted reducing greenhouse gas (GHG) emissions from shipping by 50% by 2050. Conventional shipping fuels currently used are heavy fuel oil (HFO) and marine gas/diesel oil (MGO/MDO). There has been growing interest in using LNG as a shipping fuel because of its competitive cost, availability, and the presence of bunkering infrastructure. A thorough literature review of LNG life cycle GHG emissions shows variation depending on the following factors: shale gas extraction, pretreatment, pipeline transportation distance, liquefaction plant capacity/technology, and ship propulsion system. Compared to conventional fuels, LNG can reduce life cycle emissions up to 18%. Incorporating renewables‐based power generation in liquefaction can reduce emissions by a further 5%–10% (renewable‐assisted LNG). The reduction potential and economic effects of this modification on LNG cost are examined and it is shown that low wind‐based electricity prices can make renewable‐assisted LNG competitive. A comprehensive understanding of the factors impacting LNG emissions help identify the current and future potential of LNG in reducing shipping industry emissions and providing a short‐term transitional fuel until it is supplanted with decarbonized fuels. This paper also uses water‐energy nexus to examine the impact of responsible water management on the carbon footprint of LNG.</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.24268</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Bunkering ; Diesel fuels ; Economic impact ; Electricity pricing ; Electrode potentials ; Fuel oils ; Gas pipelines ; Gases ; Greenhouse gases ; Hydraulic fracturing ; Life cycle analysis ; life cycle emissions ; Liquefaction ; Liquefied natural gas ; liquified natural gas ; Literature reviews ; marine fuels ; Marine propulsion ; Marine transportation ; Natural gas ; Propulsion systems ; renewable‐assisted LNG ; Shale gas ; Shipping ; Shipping industry ; Sustainable development ; Water management</subject><ispartof>Canadian journal of chemical engineering, 2022-06, Vol.100 (6), p.1178-1186</ispartof><rights>2021 Canadian Society for Chemical Engineering.</rights><rights>2022 Canadian Society for Chemical Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3018-8ccbb1137efdd6317bda45a102bbac34dc7eb3b431bb2a8cee46fabb34b8d5873</citedby><cites>FETCH-LOGICAL-c3018-8ccbb1137efdd6317bda45a102bbac34dc7eb3b431bb2a8cee46fabb34b8d5873</cites><orcidid>0000-0002-0020-2281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjce.24268$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjce.24268$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Al‐Douri, Ahmad</creatorcontrib><creatorcontrib>Alsuhaibani, Abdulrahman S.</creatorcontrib><creatorcontrib>Moore, Margaux</creatorcontrib><creatorcontrib>Nielsen, Rasmus B.</creatorcontrib><creatorcontrib>El‐Baz, Amro A.</creatorcontrib><creatorcontrib>El‐Halwagi, Mahmoud M.</creatorcontrib><title>Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential</title><title>Canadian journal of chemical engineering</title><description>Substantial increases in shale gas production due to advances in hydraulic fracturing have created tremendous monetization and sustainable development opportunities, one of which is liquified natural gas (LNG). The International Maritime Organization (IMO) has targeted reducing greenhouse gas (GHG) emissions from shipping by 50% by 2050. Conventional shipping fuels currently used are heavy fuel oil (HFO) and marine gas/diesel oil (MGO/MDO). There has been growing interest in using LNG as a shipping fuel because of its competitive cost, availability, and the presence of bunkering infrastructure. A thorough literature review of LNG life cycle GHG emissions shows variation depending on the following factors: shale gas extraction, pretreatment, pipeline transportation distance, liquefaction plant capacity/technology, and ship propulsion system. Compared to conventional fuels, LNG can reduce life cycle emissions up to 18%. Incorporating renewables‐based power generation in liquefaction can reduce emissions by a further 5%–10% (renewable‐assisted LNG). The reduction potential and economic effects of this modification on LNG cost are examined and it is shown that low wind‐based electricity prices can make renewable‐assisted LNG competitive. A comprehensive understanding of the factors impacting LNG emissions help identify the current and future potential of LNG in reducing shipping industry emissions and providing a short‐term transitional fuel until it is supplanted with decarbonized fuels. This paper also uses water‐energy nexus to examine the impact of responsible water management on the carbon footprint of LNG.</description><subject>Bunkering</subject><subject>Diesel fuels</subject><subject>Economic impact</subject><subject>Electricity pricing</subject><subject>Electrode potentials</subject><subject>Fuel oils</subject><subject>Gas pipelines</subject><subject>Gases</subject><subject>Greenhouse gases</subject><subject>Hydraulic fracturing</subject><subject>Life cycle analysis</subject><subject>life cycle emissions</subject><subject>Liquefaction</subject><subject>Liquefied natural gas</subject><subject>liquified natural gas</subject><subject>Literature reviews</subject><subject>marine fuels</subject><subject>Marine propulsion</subject><subject>Marine transportation</subject><subject>Natural gas</subject><subject>Propulsion systems</subject><subject>renewable‐assisted LNG</subject><subject>Shale gas</subject><subject>Shipping</subject><subject>Shipping industry</subject><subject>Sustainable development</subject><subject>Water management</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsXf0HAm7A1X90Pb7LUqhS8KHgL-ZjVlDTbJrvI_nt3rWdhYBh45mXmQeiakgUlhN2ZrYEFEywvT9CMVrzKCK0-TtGMEFJmgnBxji5S2o4jI4LO0GEdAcJX2yfAnypBwrBzKbk2JOwC9u7Qu8aBxUF1fVR-gvBUeKeiC4CbHvw93rgGsBmMB6yC8kNyIxIsjmB7041peN92EDqn_CU6a5RPcPXX5-j9cfVWP2Wb1_Vz_bDJDCe0zEpjtKaUF9BYm3NaaKvEUlHCtFaGC2sK0FwLTrVmqjQAIm-U1lzo0i7Lgs_RzTF3H9tDD6mT27aP43FJsjwXleCEiZG6PVImtilFaOQ-uvG1QVIiJ6VyUip_lY4wPcLfzsPwDynrl3p13PkBxwV7cg</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Al‐Douri, Ahmad</creator><creator>Alsuhaibani, Abdulrahman S.</creator><creator>Moore, Margaux</creator><creator>Nielsen, Rasmus B.</creator><creator>El‐Baz, Amro A.</creator><creator>El‐Halwagi, Mahmoud M.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0020-2281</orcidid></search><sort><creationdate>202206</creationdate><title>Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential</title><author>Al‐Douri, Ahmad ; Alsuhaibani, Abdulrahman S. ; Moore, Margaux ; Nielsen, Rasmus B. ; El‐Baz, Amro A. ; El‐Halwagi, Mahmoud M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3018-8ccbb1137efdd6317bda45a102bbac34dc7eb3b431bb2a8cee46fabb34b8d5873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bunkering</topic><topic>Diesel fuels</topic><topic>Economic impact</topic><topic>Electricity pricing</topic><topic>Electrode potentials</topic><topic>Fuel oils</topic><topic>Gas pipelines</topic><topic>Gases</topic><topic>Greenhouse gases</topic><topic>Hydraulic fracturing</topic><topic>Life cycle analysis</topic><topic>life cycle emissions</topic><topic>Liquefaction</topic><topic>Liquefied natural gas</topic><topic>liquified natural gas</topic><topic>Literature reviews</topic><topic>marine fuels</topic><topic>Marine propulsion</topic><topic>Marine transportation</topic><topic>Natural gas</topic><topic>Propulsion systems</topic><topic>renewable‐assisted LNG</topic><topic>Shale gas</topic><topic>Shipping</topic><topic>Shipping industry</topic><topic>Sustainable development</topic><topic>Water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al‐Douri, Ahmad</creatorcontrib><creatorcontrib>Alsuhaibani, Abdulrahman S.</creatorcontrib><creatorcontrib>Moore, Margaux</creatorcontrib><creatorcontrib>Nielsen, Rasmus B.</creatorcontrib><creatorcontrib>El‐Baz, Amro A.</creatorcontrib><creatorcontrib>El‐Halwagi, Mahmoud M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al‐Douri, Ahmad</au><au>Alsuhaibani, Abdulrahman S.</au><au>Moore, Margaux</au><au>Nielsen, Rasmus B.</au><au>El‐Baz, Amro A.</au><au>El‐Halwagi, Mahmoud M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential</atitle><jtitle>Canadian journal of chemical engineering</jtitle><date>2022-06</date><risdate>2022</risdate><volume>100</volume><issue>6</issue><spage>1178</spage><epage>1186</epage><pages>1178-1186</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><abstract>Substantial increases in shale gas production due to advances in hydraulic fracturing have created tremendous monetization and sustainable development opportunities, one of which is liquified natural gas (LNG). The International Maritime Organization (IMO) has targeted reducing greenhouse gas (GHG) emissions from shipping by 50% by 2050. Conventional shipping fuels currently used are heavy fuel oil (HFO) and marine gas/diesel oil (MGO/MDO). There has been growing interest in using LNG as a shipping fuel because of its competitive cost, availability, and the presence of bunkering infrastructure. A thorough literature review of LNG life cycle GHG emissions shows variation depending on the following factors: shale gas extraction, pretreatment, pipeline transportation distance, liquefaction plant capacity/technology, and ship propulsion system. Compared to conventional fuels, LNG can reduce life cycle emissions up to 18%. Incorporating renewables‐based power generation in liquefaction can reduce emissions by a further 5%–10% (renewable‐assisted LNG). The reduction potential and economic effects of this modification on LNG cost are examined and it is shown that low wind‐based electricity prices can make renewable‐assisted LNG competitive. A comprehensive understanding of the factors impacting LNG emissions help identify the current and future potential of LNG in reducing shipping industry emissions and providing a short‐term transitional fuel until it is supplanted with decarbonized fuels. This paper also uses water‐energy nexus to examine the impact of responsible water management on the carbon footprint of LNG.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/cjce.24268</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0020-2281</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-4034 |
ispartof | Canadian journal of chemical engineering, 2022-06, Vol.100 (6), p.1178-1186 |
issn | 0008-4034 1939-019X |
language | eng |
recordid | cdi_proquest_journals_2664943024 |
source | Access via Wiley Online Library |
subjects | Bunkering Diesel fuels Economic impact Electricity pricing Electrode potentials Fuel oils Gas pipelines Gases Greenhouse gases Hydraulic fracturing Life cycle analysis life cycle emissions Liquefaction Liquefied natural gas liquified natural gas Literature reviews marine fuels Marine propulsion Marine transportation Natural gas Propulsion systems renewable‐assisted LNG Shale gas Shipping Shipping industry Sustainable development Water management |
title | Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Greenhouse%20gases%20emissions%20in%20liquified%20natural%20gas%20as%20a%20marine%20fuel:%20Life%20cycle%20analysis%20and%20reduction%20potential&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Al%E2%80%90Douri,%20Ahmad&rft.date=2022-06&rft.volume=100&rft.issue=6&rft.spage=1178&rft.epage=1186&rft.pages=1178-1186&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002/cjce.24268&rft_dat=%3Cproquest_cross%3E2664943024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664943024&rft_id=info:pmid/&rfr_iscdi=true |