A Study of the Gas Flow through Air Jet Loom

Air jet loom, as one of the shuttleless looms, transports a yam into warps using viscosity and kinetic energy of an air jet. Performance of this picking system depends on the ability of instantaneous inhalation/exhaust, configuration of nozzle, operation characteristics of a check valve, etc. In the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal science 2007-05, Vol.16 (2), p.159-163
Hauptverfasser: Kim, Heuy-Dong, Lim, Chae-Min, Lee, Ho-Joon, Chun, Doo-Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Air jet loom, as one of the shuttleless looms, transports a yam into warps using viscosity and kinetic energy of an air jet. Performance of this picking system depends on the ability of instantaneous inhalation/exhaust, configuration of nozzle, operation characteristics of a check valve, etc. In the recent past, many studies have been reported on the air jet discharged from a nozzle exit, but studies for understanding the flow field characteristics associated with shear layer and shock wave/boundary layer interaction in the nozzle were not conducted enough. In this paper, a computational study was performed to explain the flow field in the air jet nozzle with an acceleration tube and validated with previous experimental data available. The results obtained from the computational study show that, in the supersonic flow regime, the flow field depends significantly on the length of acceleration tube. As nozzle pressure ratio increases, drag force acting on the string also increases. For a longer acceleration tube, the total pressure loss is large, owing to the frictional loss.
ISSN:1003-2169
1993-033X
DOI:10.1007/s11630-007-0159-3