Hole states in artificial molecules formed by vertically coupled Ge/Si quantum dots

In the tight binding approximation, the spatial configuration of the ground state and the binding energy of a hole in a “diatomic” artificial molecule formed by vertically coupled Ge/Si(001) quantum dots are studied. The inhomogeneous spatial distribution of elastic strain arising in the medium due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JETP letters 2007-07, Vol.85 (9), p.429-433
Hauptverfasser: Yakimov, A. I., Mikhalev, G. Yu, Nenashev, A. V., Dvurechenskiĭ, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 433
container_issue 9
container_start_page 429
container_title JETP letters
container_volume 85
creator Yakimov, A. I.
Mikhalev, G. Yu
Nenashev, A. V.
Dvurechenskiĭ, A. V.
description In the tight binding approximation, the spatial configuration of the ground state and the binding energy of a hole in a “diatomic” artificial molecule formed by vertically coupled Ge/Si(001) quantum dots are studied. The inhomogeneous spatial distribution of elastic strain arising in the medium due to the lattice mismatch between Ge and Si is taken into account. The strain is calculated using the valence-force-field model with a Keating interatomic potential. The formation of the hole states is shown to be determined by the competition of two processes: the appearance of a common hole due to the overlapping of “atomic” wavefunctions and the appearance of asymmetry in the potential energy of a hole in the two quantum dots because of the superposition of the elastic strain fields from the vertically aligned Ge nanoclusters. When the thickness of the Si layer separating the Ge dots (tSi) is greater than 2.3 nm, the binding energy of a hole in the ground state of the two-dot system proves to be lower than the ionization energy of a single quantum dot because of the partial elastic stress relaxation due to the coupling of the quantum dots and due to the decrease in the depth of the potential well for holes. For the values of the parameter tSi, an intermediate region is revealed, where the covalent molecular bond fails and the hole is localized in one of the two quantum dots, namely, in the dot characterized by the highest strain values.
doi_str_mv 10.1134/S0021364007090044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2664883939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664883939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-65e2902dc38ba77fb5aae72e367929b992201509d4708a90f02a8bf12827a24e3</originalsourceid><addsrcrecordid>eNplkE9LAzEQxYMoWFc_gLeA57WTP90kRynaCgUP1fOSzSawJdu0SVbotzel3socZni_YR7zEHom8EoI4_MtACWs4QACFADnN2hGylQ3XIpbNDvj-szv0UNKOwBCJBMztF0Hb3HKOtuEhz3WMQ9uMIP2eCzETL7oLsTR9rg74V9buNHen7AJ08EXdWXn2wEfJ73P04j7kNMjunPaJ_v03yv08_H-vVzXm6_V5_JtUxsqWK6bhaUKaG-Y7LQQrltobQW1rBGKqk4pSoEsQPVcgNQKHFAtO0eopEJTblmFXi53DzEcJ5tyuwtT3BfLljblb8lUqQqRy5aJIaVoXXuIw6jjqSXQnrNrr7Jjf_c4YDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664883939</pqid></control><display><type>article</type><title>Hole states in artificial molecules formed by vertically coupled Ge/Si quantum dots</title><source>Springer Nature - Complete Springer Journals</source><creator>Yakimov, A. I. ; Mikhalev, G. Yu ; Nenashev, A. V. ; Dvurechenskiĭ, A. V.</creator><creatorcontrib>Yakimov, A. I. ; Mikhalev, G. Yu ; Nenashev, A. V. ; Dvurechenskiĭ, A. V.</creatorcontrib><description>In the tight binding approximation, the spatial configuration of the ground state and the binding energy of a hole in a “diatomic” artificial molecule formed by vertically coupled Ge/Si(001) quantum dots are studied. The inhomogeneous spatial distribution of elastic strain arising in the medium due to the lattice mismatch between Ge and Si is taken into account. The strain is calculated using the valence-force-field model with a Keating interatomic potential. The formation of the hole states is shown to be determined by the competition of two processes: the appearance of a common hole due to the overlapping of “atomic” wavefunctions and the appearance of asymmetry in the potential energy of a hole in the two quantum dots because of the superposition of the elastic strain fields from the vertically aligned Ge nanoclusters. When the thickness of the Si layer separating the Ge dots (tSi) is greater than 2.3 nm, the binding energy of a hole in the ground state of the two-dot system proves to be lower than the ionization energy of a single quantum dot because of the partial elastic stress relaxation due to the coupling of the quantum dots and due to the decrease in the depth of the potential well for holes. For the values of the parameter tSi, an intermediate region is revealed, where the covalent molecular bond fails and the hole is localized in one of the two quantum dots, namely, in the dot characterized by the highest strain values.</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S0021364007090044</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Binding energy ; Chemical bonds ; Coupling (molecular) ; Germanium ; Ground state ; Nanoclusters ; Potential energy ; Quantum dots ; Silicon ; Spatial distribution ; Strain ; Stress relaxation ; Thickness ; Wave functions</subject><ispartof>JETP letters, 2007-07, Vol.85 (9), p.429-433</ispartof><rights>Pleiades Publishing, Ltd. 2007.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-65e2902dc38ba77fb5aae72e367929b992201509d4708a90f02a8bf12827a24e3</citedby><cites>FETCH-LOGICAL-c273t-65e2902dc38ba77fb5aae72e367929b992201509d4708a90f02a8bf12827a24e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yakimov, A. I.</creatorcontrib><creatorcontrib>Mikhalev, G. Yu</creatorcontrib><creatorcontrib>Nenashev, A. V.</creatorcontrib><creatorcontrib>Dvurechenskiĭ, A. V.</creatorcontrib><title>Hole states in artificial molecules formed by vertically coupled Ge/Si quantum dots</title><title>JETP letters</title><description>In the tight binding approximation, the spatial configuration of the ground state and the binding energy of a hole in a “diatomic” artificial molecule formed by vertically coupled Ge/Si(001) quantum dots are studied. The inhomogeneous spatial distribution of elastic strain arising in the medium due to the lattice mismatch between Ge and Si is taken into account. The strain is calculated using the valence-force-field model with a Keating interatomic potential. The formation of the hole states is shown to be determined by the competition of two processes: the appearance of a common hole due to the overlapping of “atomic” wavefunctions and the appearance of asymmetry in the potential energy of a hole in the two quantum dots because of the superposition of the elastic strain fields from the vertically aligned Ge nanoclusters. When the thickness of the Si layer separating the Ge dots (tSi) is greater than 2.3 nm, the binding energy of a hole in the ground state of the two-dot system proves to be lower than the ionization energy of a single quantum dot because of the partial elastic stress relaxation due to the coupling of the quantum dots and due to the decrease in the depth of the potential well for holes. For the values of the parameter tSi, an intermediate region is revealed, where the covalent molecular bond fails and the hole is localized in one of the two quantum dots, namely, in the dot characterized by the highest strain values.</description><subject>Binding energy</subject><subject>Chemical bonds</subject><subject>Coupling (molecular)</subject><subject>Germanium</subject><subject>Ground state</subject><subject>Nanoclusters</subject><subject>Potential energy</subject><subject>Quantum dots</subject><subject>Silicon</subject><subject>Spatial distribution</subject><subject>Strain</subject><subject>Stress relaxation</subject><subject>Thickness</subject><subject>Wave functions</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEQxYMoWFc_gLeA57WTP90kRynaCgUP1fOSzSawJdu0SVbotzel3socZni_YR7zEHom8EoI4_MtACWs4QACFADnN2hGylQ3XIpbNDvj-szv0UNKOwBCJBMztF0Hb3HKOtuEhz3WMQ9uMIP2eCzETL7oLsTR9rg74V9buNHen7AJ08EXdWXn2wEfJ73P04j7kNMjunPaJ_v03yv08_H-vVzXm6_V5_JtUxsqWK6bhaUKaG-Y7LQQrltobQW1rBGKqk4pSoEsQPVcgNQKHFAtO0eopEJTblmFXi53DzEcJ5tyuwtT3BfLljblb8lUqQqRy5aJIaVoXXuIw6jjqSXQnrNrr7Jjf_c4YDs</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Yakimov, A. I.</creator><creator>Mikhalev, G. Yu</creator><creator>Nenashev, A. V.</creator><creator>Dvurechenskiĭ, A. V.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070701</creationdate><title>Hole states in artificial molecules formed by vertically coupled Ge/Si quantum dots</title><author>Yakimov, A. I. ; Mikhalev, G. Yu ; Nenashev, A. V. ; Dvurechenskiĭ, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-65e2902dc38ba77fb5aae72e367929b992201509d4708a90f02a8bf12827a24e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Binding energy</topic><topic>Chemical bonds</topic><topic>Coupling (molecular)</topic><topic>Germanium</topic><topic>Ground state</topic><topic>Nanoclusters</topic><topic>Potential energy</topic><topic>Quantum dots</topic><topic>Silicon</topic><topic>Spatial distribution</topic><topic>Strain</topic><topic>Stress relaxation</topic><topic>Thickness</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yakimov, A. I.</creatorcontrib><creatorcontrib>Mikhalev, G. Yu</creatorcontrib><creatorcontrib>Nenashev, A. V.</creatorcontrib><creatorcontrib>Dvurechenskiĭ, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yakimov, A. I.</au><au>Mikhalev, G. Yu</au><au>Nenashev, A. V.</au><au>Dvurechenskiĭ, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hole states in artificial molecules formed by vertically coupled Ge/Si quantum dots</atitle><jtitle>JETP letters</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>85</volume><issue>9</issue><spage>429</spage><epage>433</epage><pages>429-433</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>In the tight binding approximation, the spatial configuration of the ground state and the binding energy of a hole in a “diatomic” artificial molecule formed by vertically coupled Ge/Si(001) quantum dots are studied. The inhomogeneous spatial distribution of elastic strain arising in the medium due to the lattice mismatch between Ge and Si is taken into account. The strain is calculated using the valence-force-field model with a Keating interatomic potential. The formation of the hole states is shown to be determined by the competition of two processes: the appearance of a common hole due to the overlapping of “atomic” wavefunctions and the appearance of asymmetry in the potential energy of a hole in the two quantum dots because of the superposition of the elastic strain fields from the vertically aligned Ge nanoclusters. When the thickness of the Si layer separating the Ge dots (tSi) is greater than 2.3 nm, the binding energy of a hole in the ground state of the two-dot system proves to be lower than the ionization energy of a single quantum dot because of the partial elastic stress relaxation due to the coupling of the quantum dots and due to the decrease in the depth of the potential well for holes. For the values of the parameter tSi, an intermediate region is revealed, where the covalent molecular bond fails and the hole is localized in one of the two quantum dots, namely, in the dot characterized by the highest strain values.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1134/S0021364007090044</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-3640
ispartof JETP letters, 2007-07, Vol.85 (9), p.429-433
issn 0021-3640
1090-6487
language eng
recordid cdi_proquest_journals_2664883939
source Springer Nature - Complete Springer Journals
subjects Binding energy
Chemical bonds
Coupling (molecular)
Germanium
Ground state
Nanoclusters
Potential energy
Quantum dots
Silicon
Spatial distribution
Strain
Stress relaxation
Thickness
Wave functions
title Hole states in artificial molecules formed by vertically coupled Ge/Si quantum dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hole%20states%20in%20artificial%20molecules%20formed%20by%20vertically%20coupled%20Ge/Si%20quantum%20dots&rft.jtitle=JETP%20letters&rft.au=Yakimov,%20A.%20I.&rft.date=2007-07-01&rft.volume=85&rft.issue=9&rft.spage=429&rft.epage=433&rft.pages=429-433&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S0021364007090044&rft_dat=%3Cproquest_cross%3E2664883939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664883939&rft_id=info:pmid/&rfr_iscdi=true