An aqueous solution approach to advanced metal oxide arrays on substrates
Materials chemistry has emerged as one of the most consistent fabrication tools for the rational delivery of high purity functional nanomaterials, engineered from molecular to microscopic scale at low cost and large scale. An overview of the major achievements and latest advances of a recently devel...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2007-10, Vol.89 (1), p.1-8 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Materials chemistry has emerged as one of the most consistent fabrication tools for the rational delivery of high purity functional nanomaterials, engineered from molecular to microscopic scale at low cost and large scale. An overview of the major achievements and latest advances of a recently developed growth concept and low temperature aqueous synthesis method, for the fabrication of purpose-built large bandgap metal oxide semiconductor materials and oriented nano-arrays is presented. Important insight of direct relevance for semiconductor technology, optoelectronics, photovoltaics and photocatalysis for solar hydrogen generation, are revealed by in-depth investigations of the electronic structure of metal oxide nanostructures with new morphology and architecture, carried out at synchrotron radiation facilities. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-007-4039-0 |