Formation of a strong negative wake behind a helical swimmer in a viscoelastic fluid

We investigate the effects of helical swimmer shape (i.e. helical pitch angle and tail thickness) on swimming dynamics in a constant viscosity viscoelastic (Boger) fluid via a combination of particle tracking velocimetry, particle image velocimetry and three-dimensional simulations of the finitely e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2022-07, Vol.942, Article A10
Hauptverfasser: Wu, Shijian, Solano, Tomas, Shoele, Kourosh, Mohammadigoushki, Hadi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 942
creator Wu, Shijian
Solano, Tomas
Shoele, Kourosh
Mohammadigoushki, Hadi
description We investigate the effects of helical swimmer shape (i.e. helical pitch angle and tail thickness) on swimming dynamics in a constant viscosity viscoelastic (Boger) fluid via a combination of particle tracking velocimetry, particle image velocimetry and three-dimensional simulations of the finitely extensible nonlinear elastic model with Peterlin approximation (FENE-P). The 3D-printed helical swimmer is actuated in a magnetic field using a custom-built rotating Helmholtz coil. Our results indicate that increasing the swimmer tail thickness and pitch angle enhances the normalized swimming speed (i.e. ratio of swimming speed in the Boger fluid to that of the Newtonian fluid). Strikingly, unlike the Newtonian fluid, the viscoelastic flow around the swimmer is characterized by formation of a front–back flow asymmetry that is characterized by a strong negative wake downstream of the swimmer's body. Evidently, the strength of the negative wake is inversely proportional to the normalized swimming speed. Three-dimensional simulations of the swimmer with the FENE-P model with conditions that match those of experiments, confirm formation of a similar front–back flow asymmetry around the swimmer. Finally, by developing an approximate force balance in the streamwise direction, we show that the contribution of polymer stresses in the interior region of the helix may provide a mechanism for swimming enhancement or diminution in the viscoelastic fluid.
doi_str_mv 10.1017/jfm.2022.378
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2664753728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2022_378</cupid><sourcerecordid>2664753728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-36a98bd34202960ac8e1b00271029eb6db8864b495ebb991cc927fec558b45f83</originalsourceid><addsrcrecordid>eNptkDFPwzAQhS0EEqWw8QMssZJgO4kdj6iigFSJpcyW7VxalyQudtqKf4-rVmJhOt277-6eHkL3lOSUUPG0afucEcbyQtQXaEJLLjPBy-oSTUiSM0oZuUY3MW4IoQWRYoKWcx96PTo_YN9ijeMY_LDCA6ySuAd80F-ADazd0KTpGjpndYfjwfU9BOyGJO5dtB46HUdncdvtXHOLrlrdRbg71yn6nL8sZ2_Z4uP1ffa8yCyjYswKrmVtmqJMniUn2tZATTIqaOrB8MbUNS9NKSswRkpqrWSiBVtVtSmrti6m6OF0dxv89w7iqDZ-F4b0UjHOS1EVgh2pxxNlg48xQKu2wfU6_ChK1DE3lXJTx9xUyi3h-RnXvQmuWcHf1X8XfgGAJW8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664753728</pqid></control><display><type>article</type><title>Formation of a strong negative wake behind a helical swimmer in a viscoelastic fluid</title><source>Cambridge Journals</source><creator>Wu, Shijian ; Solano, Tomas ; Shoele, Kourosh ; Mohammadigoushki, Hadi</creator><creatorcontrib>Wu, Shijian ; Solano, Tomas ; Shoele, Kourosh ; Mohammadigoushki, Hadi</creatorcontrib><description>We investigate the effects of helical swimmer shape (i.e. helical pitch angle and tail thickness) on swimming dynamics in a constant viscosity viscoelastic (Boger) fluid via a combination of particle tracking velocimetry, particle image velocimetry and three-dimensional simulations of the finitely extensible nonlinear elastic model with Peterlin approximation (FENE-P). The 3D-printed helical swimmer is actuated in a magnetic field using a custom-built rotating Helmholtz coil. Our results indicate that increasing the swimmer tail thickness and pitch angle enhances the normalized swimming speed (i.e. ratio of swimming speed in the Boger fluid to that of the Newtonian fluid). Strikingly, unlike the Newtonian fluid, the viscoelastic flow around the swimmer is characterized by formation of a front–back flow asymmetry that is characterized by a strong negative wake downstream of the swimmer's body. Evidently, the strength of the negative wake is inversely proportional to the normalized swimming speed. Three-dimensional simulations of the swimmer with the FENE-P model with conditions that match those of experiments, confirm formation of a similar front–back flow asymmetry around the swimmer. Finally, by developing an approximate force balance in the streamwise direction, we show that the contribution of polymer stresses in the interior region of the helix may provide a mechanism for swimming enhancement or diminution in the viscoelastic fluid.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2022.378</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Aquatic reptiles ; Asymmetry ; Coils ; Fluid flow ; JFM Papers ; Magnetic field ; Magnetic fields ; Newtonian fluids ; Particle image velocimetry ; Particle tracking ; Particle tracking velocimetry ; Pitch (inclination) ; Polymers ; Shape effects ; Swimming ; Thickness ; Three dimensional printing ; Viscoelastic fluids ; Viscoelasticity ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2022-07, Vol.942, Article A10</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c217t-36a98bd34202960ac8e1b00271029eb6db8864b495ebb991cc927fec558b45f83</citedby><cites>FETCH-LOGICAL-c217t-36a98bd34202960ac8e1b00271029eb6db8864b495ebb991cc927fec558b45f83</cites><orcidid>0000-0002-7240-2215 ; 0000-0003-2810-0065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112022003780/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Wu, Shijian</creatorcontrib><creatorcontrib>Solano, Tomas</creatorcontrib><creatorcontrib>Shoele, Kourosh</creatorcontrib><creatorcontrib>Mohammadigoushki, Hadi</creatorcontrib><title>Formation of a strong negative wake behind a helical swimmer in a viscoelastic fluid</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We investigate the effects of helical swimmer shape (i.e. helical pitch angle and tail thickness) on swimming dynamics in a constant viscosity viscoelastic (Boger) fluid via a combination of particle tracking velocimetry, particle image velocimetry and three-dimensional simulations of the finitely extensible nonlinear elastic model with Peterlin approximation (FENE-P). The 3D-printed helical swimmer is actuated in a magnetic field using a custom-built rotating Helmholtz coil. Our results indicate that increasing the swimmer tail thickness and pitch angle enhances the normalized swimming speed (i.e. ratio of swimming speed in the Boger fluid to that of the Newtonian fluid). Strikingly, unlike the Newtonian fluid, the viscoelastic flow around the swimmer is characterized by formation of a front–back flow asymmetry that is characterized by a strong negative wake downstream of the swimmer's body. Evidently, the strength of the negative wake is inversely proportional to the normalized swimming speed. Three-dimensional simulations of the swimmer with the FENE-P model with conditions that match those of experiments, confirm formation of a similar front–back flow asymmetry around the swimmer. Finally, by developing an approximate force balance in the streamwise direction, we show that the contribution of polymer stresses in the interior region of the helix may provide a mechanism for swimming enhancement or diminution in the viscoelastic fluid.</description><subject>Approximation</subject><subject>Aquatic reptiles</subject><subject>Asymmetry</subject><subject>Coils</subject><subject>Fluid flow</subject><subject>JFM Papers</subject><subject>Magnetic field</subject><subject>Magnetic fields</subject><subject>Newtonian fluids</subject><subject>Particle image velocimetry</subject><subject>Particle tracking</subject><subject>Particle tracking velocimetry</subject><subject>Pitch (inclination)</subject><subject>Polymers</subject><subject>Shape effects</subject><subject>Swimming</subject><subject>Thickness</subject><subject>Three dimensional printing</subject><subject>Viscoelastic fluids</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkDFPwzAQhS0EEqWw8QMssZJgO4kdj6iigFSJpcyW7VxalyQudtqKf4-rVmJhOt277-6eHkL3lOSUUPG0afucEcbyQtQXaEJLLjPBy-oSTUiSM0oZuUY3MW4IoQWRYoKWcx96PTo_YN9ijeMY_LDCA6ySuAd80F-ADazd0KTpGjpndYfjwfU9BOyGJO5dtB46HUdncdvtXHOLrlrdRbg71yn6nL8sZ2_Z4uP1ffa8yCyjYswKrmVtmqJMniUn2tZATTIqaOrB8MbUNS9NKSswRkpqrWSiBVtVtSmrti6m6OF0dxv89w7iqDZ-F4b0UjHOS1EVgh2pxxNlg48xQKu2wfU6_ChK1DE3lXJTx9xUyi3h-RnXvQmuWcHf1X8XfgGAJW8Y</recordid><startdate>20220710</startdate><enddate>20220710</enddate><creator>Wu, Shijian</creator><creator>Solano, Tomas</creator><creator>Shoele, Kourosh</creator><creator>Mohammadigoushki, Hadi</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7240-2215</orcidid><orcidid>https://orcid.org/0000-0003-2810-0065</orcidid></search><sort><creationdate>20220710</creationdate><title>Formation of a strong negative wake behind a helical swimmer in a viscoelastic fluid</title><author>Wu, Shijian ; Solano, Tomas ; Shoele, Kourosh ; Mohammadigoushki, Hadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-36a98bd34202960ac8e1b00271029eb6db8864b495ebb991cc927fec558b45f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Aquatic reptiles</topic><topic>Asymmetry</topic><topic>Coils</topic><topic>Fluid flow</topic><topic>JFM Papers</topic><topic>Magnetic field</topic><topic>Magnetic fields</topic><topic>Newtonian fluids</topic><topic>Particle image velocimetry</topic><topic>Particle tracking</topic><topic>Particle tracking velocimetry</topic><topic>Pitch (inclination)</topic><topic>Polymers</topic><topic>Shape effects</topic><topic>Swimming</topic><topic>Thickness</topic><topic>Three dimensional printing</topic><topic>Viscoelastic fluids</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Shijian</creatorcontrib><creatorcontrib>Solano, Tomas</creatorcontrib><creatorcontrib>Shoele, Kourosh</creatorcontrib><creatorcontrib>Mohammadigoushki, Hadi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Shijian</au><au>Solano, Tomas</au><au>Shoele, Kourosh</au><au>Mohammadigoushki, Hadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of a strong negative wake behind a helical swimmer in a viscoelastic fluid</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2022-07-10</date><risdate>2022</risdate><volume>942</volume><artnum>A10</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We investigate the effects of helical swimmer shape (i.e. helical pitch angle and tail thickness) on swimming dynamics in a constant viscosity viscoelastic (Boger) fluid via a combination of particle tracking velocimetry, particle image velocimetry and three-dimensional simulations of the finitely extensible nonlinear elastic model with Peterlin approximation (FENE-P). The 3D-printed helical swimmer is actuated in a magnetic field using a custom-built rotating Helmholtz coil. Our results indicate that increasing the swimmer tail thickness and pitch angle enhances the normalized swimming speed (i.e. ratio of swimming speed in the Boger fluid to that of the Newtonian fluid). Strikingly, unlike the Newtonian fluid, the viscoelastic flow around the swimmer is characterized by formation of a front–back flow asymmetry that is characterized by a strong negative wake downstream of the swimmer's body. Evidently, the strength of the negative wake is inversely proportional to the normalized swimming speed. Three-dimensional simulations of the swimmer with the FENE-P model with conditions that match those of experiments, confirm formation of a similar front–back flow asymmetry around the swimmer. Finally, by developing an approximate force balance in the streamwise direction, we show that the contribution of polymer stresses in the interior region of the helix may provide a mechanism for swimming enhancement or diminution in the viscoelastic fluid.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2022.378</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7240-2215</orcidid><orcidid>https://orcid.org/0000-0003-2810-0065</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2022-07, Vol.942, Article A10
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2664753728
source Cambridge Journals
subjects Approximation
Aquatic reptiles
Asymmetry
Coils
Fluid flow
JFM Papers
Magnetic field
Magnetic fields
Newtonian fluids
Particle image velocimetry
Particle tracking
Particle tracking velocimetry
Pitch (inclination)
Polymers
Shape effects
Swimming
Thickness
Three dimensional printing
Viscoelastic fluids
Viscoelasticity
Viscosity
title Formation of a strong negative wake behind a helical swimmer in a viscoelastic fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20a%20strong%20negative%20wake%20behind%20a%20helical%20swimmer%20in%20a%20viscoelastic%20fluid&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Wu,%20Shijian&rft.date=2022-07-10&rft.volume=942&rft.artnum=A10&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2022.378&rft_dat=%3Cproquest_cross%3E2664753728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664753728&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2022_378&rfr_iscdi=true