Resistance sensing response optimization and interval loading continuity of multiwalled carbon nanotube/natural rubber composites: Experiment and simulation

To achieve long‐term and real‐time monitoring of the deformation of isolation bearings, a conductive composite with a natural rubber (NR) matrix modified by multiwalled carbon nanotubes (MWCNTs) is processed by prestrain. The resistance‐strain response of this composite indicates excellent uniformit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2022-07, Vol.139 (26), p.n/a
Hauptverfasser: Liu, Xingyao, Wang, Yang, Li, Rui, Yang, Yang, Niu, Kangmin, Fan, Zhengming, Guo, Rongxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 26
container_start_page
container_title Journal of applied polymer science
container_volume 139
creator Liu, Xingyao
Wang, Yang
Li, Rui
Yang, Yang
Niu, Kangmin
Fan, Zhengming
Guo, Rongxin
description To achieve long‐term and real‐time monitoring of the deformation of isolation bearings, a conductive composite with a natural rubber (NR) matrix modified by multiwalled carbon nanotubes (MWCNTs) is processed by prestrain. The resistance‐strain response of this composite indicates excellent uniformity, linearity, hysteresis, reproducibility and stability due to the prestrain process for the composite before application. To explain the mechanism of the resistance‐strain response for the composite, a theoretical model is developed to analyze the relation between the conductivity and the MWCNT network structure. Mechanical and electrical testing under cyclic loads indicates that the prestrain of the composite could reduce or even eliminate the ‘shoulder peak’ effect of the resistance‐strain curve. Meanwhile, the resistance‐strain response behavior is independent of the prestrain temperature and discontinuous before and after the interval time. Furthermore, the coarse‐grained molecular dynamics simulation and microstructure testing indicate that the resistance‐strain response is induced by the changing orientation of MWCNT molecules in the rubber matrix under tension loading. All of the results and findings provide potential applications of this MWCNT/NR composite for deformation monitoring.
doi_str_mv 10.1002/app.52430
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2664679125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664679125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3510-5658a2281d0f14caa2ea56f284f7124e015d0852f0c309c668c4fb17d5a2d2ba3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEuWx4A8ssWKR1nZjN2GHqvKQKoEQrKOJM0FGqR1sh1K-hY_FbdmymsWcM3d0CbngbMwZExPo-7EU-ZQdkBFn5SzLlSgOySjteFaUpTwmJyG8M8a5ZGpEfp4xmBDBaqQBbTD2jXoMvbMBqeujWZlviMZZCrahxkb0n9DRzkGzRbWz0djBxA11LV0NXTRr6DpsqAZfJ8uCdXGocWIhDj6Zfqhr9Elc9S6YiOGaLr569GaFNu5Cgkl3dpln5KiFLuD53zwlr7eLl_l9tny8e5jfLDM9lZxlUskChCh4w1qeawCBIFUrirydcZEj47JhhRQt01NWaqUKnbc1nzUSRCNqmJ6Sy_3d3ruPAUOs3t3gbYqshFK5mpVcyERd7SntXQge26pPX4PfVJxV2_KrVH61Kz-xkz27Nh1u_germ6envfELmmSKvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664679125</pqid></control><display><type>article</type><title>Resistance sensing response optimization and interval loading continuity of multiwalled carbon nanotube/natural rubber composites: Experiment and simulation</title><source>Wiley Journals</source><creator>Liu, Xingyao ; Wang, Yang ; Li, Rui ; Yang, Yang ; Niu, Kangmin ; Fan, Zhengming ; Guo, Rongxin</creator><creatorcontrib>Liu, Xingyao ; Wang, Yang ; Li, Rui ; Yang, Yang ; Niu, Kangmin ; Fan, Zhengming ; Guo, Rongxin</creatorcontrib><description>To achieve long‐term and real‐time monitoring of the deformation of isolation bearings, a conductive composite with a natural rubber (NR) matrix modified by multiwalled carbon nanotubes (MWCNTs) is processed by prestrain. The resistance‐strain response of this composite indicates excellent uniformity, linearity, hysteresis, reproducibility and stability due to the prestrain process for the composite before application. To explain the mechanism of the resistance‐strain response for the composite, a theoretical model is developed to analyze the relation between the conductivity and the MWCNT network structure. Mechanical and electrical testing under cyclic loads indicates that the prestrain of the composite could reduce or even eliminate the ‘shoulder peak’ effect of the resistance‐strain curve. Meanwhile, the resistance‐strain response behavior is independent of the prestrain temperature and discontinuous before and after the interval time. Furthermore, the coarse‐grained molecular dynamics simulation and microstructure testing indicate that the resistance‐strain response is induced by the changing orientation of MWCNT molecules in the rubber matrix under tension loading. All of the results and findings provide potential applications of this MWCNT/NR composite for deformation monitoring.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.52430</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>applications ; Cyclic loads ; Materials science ; Molecular dynamics ; Monitoring ; Multi wall carbon nanotubes ; Natural rubber ; Optimization ; Polymers ; sensors and actuators ; structure‐property relationships</subject><ispartof>Journal of applied polymer science, 2022-07, Vol.139 (26), p.n/a</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3510-5658a2281d0f14caa2ea56f284f7124e015d0852f0c309c668c4fb17d5a2d2ba3</citedby><cites>FETCH-LOGICAL-c3510-5658a2281d0f14caa2ea56f284f7124e015d0852f0c309c668c4fb17d5a2d2ba3</cites><orcidid>0000-0002-8500-9121 ; 0000-0002-2290-4911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.52430$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.52430$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liu, Xingyao</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Niu, Kangmin</creatorcontrib><creatorcontrib>Fan, Zhengming</creatorcontrib><creatorcontrib>Guo, Rongxin</creatorcontrib><title>Resistance sensing response optimization and interval loading continuity of multiwalled carbon nanotube/natural rubber composites: Experiment and simulation</title><title>Journal of applied polymer science</title><description>To achieve long‐term and real‐time monitoring of the deformation of isolation bearings, a conductive composite with a natural rubber (NR) matrix modified by multiwalled carbon nanotubes (MWCNTs) is processed by prestrain. The resistance‐strain response of this composite indicates excellent uniformity, linearity, hysteresis, reproducibility and stability due to the prestrain process for the composite before application. To explain the mechanism of the resistance‐strain response for the composite, a theoretical model is developed to analyze the relation between the conductivity and the MWCNT network structure. Mechanical and electrical testing under cyclic loads indicates that the prestrain of the composite could reduce or even eliminate the ‘shoulder peak’ effect of the resistance‐strain curve. Meanwhile, the resistance‐strain response behavior is independent of the prestrain temperature and discontinuous before and after the interval time. Furthermore, the coarse‐grained molecular dynamics simulation and microstructure testing indicate that the resistance‐strain response is induced by the changing orientation of MWCNT molecules in the rubber matrix under tension loading. All of the results and findings provide potential applications of this MWCNT/NR composite for deformation monitoring.</description><subject>applications</subject><subject>Cyclic loads</subject><subject>Materials science</subject><subject>Molecular dynamics</subject><subject>Monitoring</subject><subject>Multi wall carbon nanotubes</subject><subject>Natural rubber</subject><subject>Optimization</subject><subject>Polymers</subject><subject>sensors and actuators</subject><subject>structure‐property relationships</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEuWx4A8ssWKR1nZjN2GHqvKQKoEQrKOJM0FGqR1sh1K-hY_FbdmymsWcM3d0CbngbMwZExPo-7EU-ZQdkBFn5SzLlSgOySjteFaUpTwmJyG8M8a5ZGpEfp4xmBDBaqQBbTD2jXoMvbMBqeujWZlviMZZCrahxkb0n9DRzkGzRbWz0djBxA11LV0NXTRr6DpsqAZfJ8uCdXGocWIhDj6Zfqhr9Elc9S6YiOGaLr569GaFNu5Cgkl3dpln5KiFLuD53zwlr7eLl_l9tny8e5jfLDM9lZxlUskChCh4w1qeawCBIFUrirydcZEj47JhhRQt01NWaqUKnbc1nzUSRCNqmJ6Sy_3d3ruPAUOs3t3gbYqshFK5mpVcyERd7SntXQge26pPX4PfVJxV2_KrVH61Kz-xkz27Nh1u_germ6envfELmmSKvQ</recordid><startdate>20220710</startdate><enddate>20220710</enddate><creator>Liu, Xingyao</creator><creator>Wang, Yang</creator><creator>Li, Rui</creator><creator>Yang, Yang</creator><creator>Niu, Kangmin</creator><creator>Fan, Zhengming</creator><creator>Guo, Rongxin</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8500-9121</orcidid><orcidid>https://orcid.org/0000-0002-2290-4911</orcidid></search><sort><creationdate>20220710</creationdate><title>Resistance sensing response optimization and interval loading continuity of multiwalled carbon nanotube/natural rubber composites: Experiment and simulation</title><author>Liu, Xingyao ; Wang, Yang ; Li, Rui ; Yang, Yang ; Niu, Kangmin ; Fan, Zhengming ; Guo, Rongxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3510-5658a2281d0f14caa2ea56f284f7124e015d0852f0c309c668c4fb17d5a2d2ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>applications</topic><topic>Cyclic loads</topic><topic>Materials science</topic><topic>Molecular dynamics</topic><topic>Monitoring</topic><topic>Multi wall carbon nanotubes</topic><topic>Natural rubber</topic><topic>Optimization</topic><topic>Polymers</topic><topic>sensors and actuators</topic><topic>structure‐property relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xingyao</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Niu, Kangmin</creatorcontrib><creatorcontrib>Fan, Zhengming</creatorcontrib><creatorcontrib>Guo, Rongxin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xingyao</au><au>Wang, Yang</au><au>Li, Rui</au><au>Yang, Yang</au><au>Niu, Kangmin</au><au>Fan, Zhengming</au><au>Guo, Rongxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resistance sensing response optimization and interval loading continuity of multiwalled carbon nanotube/natural rubber composites: Experiment and simulation</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-07-10</date><risdate>2022</risdate><volume>139</volume><issue>26</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>To achieve long‐term and real‐time monitoring of the deformation of isolation bearings, a conductive composite with a natural rubber (NR) matrix modified by multiwalled carbon nanotubes (MWCNTs) is processed by prestrain. The resistance‐strain response of this composite indicates excellent uniformity, linearity, hysteresis, reproducibility and stability due to the prestrain process for the composite before application. To explain the mechanism of the resistance‐strain response for the composite, a theoretical model is developed to analyze the relation between the conductivity and the MWCNT network structure. Mechanical and electrical testing under cyclic loads indicates that the prestrain of the composite could reduce or even eliminate the ‘shoulder peak’ effect of the resistance‐strain curve. Meanwhile, the resistance‐strain response behavior is independent of the prestrain temperature and discontinuous before and after the interval time. Furthermore, the coarse‐grained molecular dynamics simulation and microstructure testing indicate that the resistance‐strain response is induced by the changing orientation of MWCNT molecules in the rubber matrix under tension loading. All of the results and findings provide potential applications of this MWCNT/NR composite for deformation monitoring.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.52430</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8500-9121</orcidid><orcidid>https://orcid.org/0000-0002-2290-4911</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2022-07, Vol.139 (26), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2664679125
source Wiley Journals
subjects applications
Cyclic loads
Materials science
Molecular dynamics
Monitoring
Multi wall carbon nanotubes
Natural rubber
Optimization
Polymers
sensors and actuators
structure‐property relationships
title Resistance sensing response optimization and interval loading continuity of multiwalled carbon nanotube/natural rubber composites: Experiment and simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resistance%20sensing%20response%20optimization%20and%20interval%20loading%20continuity%20of%20multiwalled%20carbon%20nanotube/natural%20rubber%20composites:%20Experiment%20and%20simulation&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Liu,%20Xingyao&rft.date=2022-07-10&rft.volume=139&rft.issue=26&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.52430&rft_dat=%3Cproquest_cross%3E2664679125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664679125&rft_id=info:pmid/&rfr_iscdi=true