Nonlinear Convective SiO2 and TiO2 Hybrid Nanofluid Flow over an Inclined Stretched Surface
The hybrid nanofluid is extensively used in manufacturing commercial applications due to its high exceptional capacity to increase the heat transfer rate. As a result, in the existence of nonlinear convection, the hybrid nanofluid is considered to flow on an inclined plane. The nonlinear convection...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2022-05, Vol.2022 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of nanomaterials |
container_volume | 2022 |
creator | Sehrish Shah, Said Anwar Mouldi, Abir Sene, Ndolane |
description | The hybrid nanofluid is extensively used in manufacturing commercial applications due to its high exceptional capacity to increase the heat transfer rate. As a result, in the existence of nonlinear convection, the hybrid nanofluid is considered to flow on an inclined plane. The nonlinear convection has many applications in real life and is more relevant to the natural flow avoiding the flow restrictions. The focus has been executed on the thermal and mass Grashof numbers to analyse the fluid motion in the presence of these parameters for nonlinear nature. Moreover, the hybrid nanofluid flow analysis has been done to investigate the heat transfer analysis. The modelled equations are solved through an analytical approach. The heat and mass transfer rates and drag force are calculated under the influence of various physical parameters. The new parameter of the Grashof numbers improves the fluid motion for its larger values, and consequently, the fluid rapidly falls down from the inclined plane. The obtained outputs show that hybrid nanofluids are more effective in heat transfer analysis as compared to other conventional fluids. |
doi_str_mv | 10.1155/2022/6237698 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hinda</sourceid><recordid>TN_cdi_proquest_journals_2664618275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664618275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-efc9a7d1095eca8bf95987bc8952ba8b8aec0291e838e442896b48767eb79c7a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZv_oAFjxK7u8l-HaVYWyjtofXkYdlsJnRL3NRN0tJ_b0KLp3kGHt4ZXoSeKXmjlPMJI4xNBEul0OoGjahQMsko07f_TMk9emiaPSEZ15yN0PeqDpUPYCOe1uEIrvVHwBu_ZtiGAm8HmJ_z6Au8sqEuq66nWVWfcH2E2Dt4EdwQUOBNG6F1u4G6WFoHj-iutFUDT9c5Rl-zj-10nizXn4vp-zJxLCVtAqXTVhaUaA7OqrzUXCuZO9U_mPe7suAI0xRUqiDLmNIiz5QUEnKpnbTpGL1ccg-x_u2gac2-7mLoTxomRCaoYpL31uvF2vlQ2JM3h-h_bDwbSszQnhnaM9f20j8vx2CH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664618275</pqid></control><display><type>article</type><title>Nonlinear Convective SiO2 and TiO2 Hybrid Nanofluid Flow over an Inclined Stretched Surface</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sehrish ; Shah, Said Anwar ; Mouldi, Abir ; Sene, Ndolane</creator><contributor>Khan, Amir</contributor><creatorcontrib>Sehrish ; Shah, Said Anwar ; Mouldi, Abir ; Sene, Ndolane ; Khan, Amir</creatorcontrib><description>The hybrid nanofluid is extensively used in manufacturing commercial applications due to its high exceptional capacity to increase the heat transfer rate. As a result, in the existence of nonlinear convection, the hybrid nanofluid is considered to flow on an inclined plane. The nonlinear convection has many applications in real life and is more relevant to the natural flow avoiding the flow restrictions. The focus has been executed on the thermal and mass Grashof numbers to analyse the fluid motion in the presence of these parameters for nonlinear nature. Moreover, the hybrid nanofluid flow analysis has been done to investigate the heat transfer analysis. The modelled equations are solved through an analytical approach. The heat and mass transfer rates and drag force are calculated under the influence of various physical parameters. The new parameter of the Grashof numbers improves the fluid motion for its larger values, and consequently, the fluid rapidly falls down from the inclined plane. The obtained outputs show that hybrid nanofluids are more effective in heat transfer analysis as compared to other conventional fluids.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2022/6237698</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Alternative energy sources ; Climate change ; Convection ; Drag ; Engineering ; Fluid flow ; Fluids ; Fossil fuels ; Heat transfer ; Magnetic fields ; Mass transfer ; Nanofluids ; Nanomaterials ; Outdoor air quality ; Parameters ; Permeability ; Physical properties ; Renewable resources ; Researchers ; Silicon dioxide ; Solar energy ; Titanium dioxide</subject><ispartof>Journal of nanomaterials, 2022-05, Vol.2022</ispartof><rights>Copyright © 2022 Sehrish et al.</rights><rights>Copyright © 2022 Sehrish et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c230t-efc9a7d1095eca8bf95987bc8952ba8b8aec0291e838e442896b48767eb79c7a3</citedby><orcidid>0000-0002-8664-6464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Khan, Amir</contributor><creatorcontrib>Sehrish</creatorcontrib><creatorcontrib>Shah, Said Anwar</creatorcontrib><creatorcontrib>Mouldi, Abir</creatorcontrib><creatorcontrib>Sene, Ndolane</creatorcontrib><title>Nonlinear Convective SiO2 and TiO2 Hybrid Nanofluid Flow over an Inclined Stretched Surface</title><title>Journal of nanomaterials</title><description>The hybrid nanofluid is extensively used in manufacturing commercial applications due to its high exceptional capacity to increase the heat transfer rate. As a result, in the existence of nonlinear convection, the hybrid nanofluid is considered to flow on an inclined plane. The nonlinear convection has many applications in real life and is more relevant to the natural flow avoiding the flow restrictions. The focus has been executed on the thermal and mass Grashof numbers to analyse the fluid motion in the presence of these parameters for nonlinear nature. Moreover, the hybrid nanofluid flow analysis has been done to investigate the heat transfer analysis. The modelled equations are solved through an analytical approach. The heat and mass transfer rates and drag force are calculated under the influence of various physical parameters. The new parameter of the Grashof numbers improves the fluid motion for its larger values, and consequently, the fluid rapidly falls down from the inclined plane. The obtained outputs show that hybrid nanofluids are more effective in heat transfer analysis as compared to other conventional fluids.</description><subject>Alternative energy sources</subject><subject>Climate change</subject><subject>Convection</subject><subject>Drag</subject><subject>Engineering</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Fossil fuels</subject><subject>Heat transfer</subject><subject>Magnetic fields</subject><subject>Mass transfer</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Outdoor air quality</subject><subject>Parameters</subject><subject>Permeability</subject><subject>Physical properties</subject><subject>Renewable resources</subject><subject>Researchers</subject><subject>Silicon dioxide</subject><subject>Solar energy</subject><subject>Titanium dioxide</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZv_oAFjxK7u8l-HaVYWyjtofXkYdlsJnRL3NRN0tJ_b0KLp3kGHt4ZXoSeKXmjlPMJI4xNBEul0OoGjahQMsko07f_TMk9emiaPSEZ15yN0PeqDpUPYCOe1uEIrvVHwBu_ZtiGAm8HmJ_z6Au8sqEuq66nWVWfcH2E2Dt4EdwQUOBNG6F1u4G6WFoHj-iutFUDT9c5Rl-zj-10nizXn4vp-zJxLCVtAqXTVhaUaA7OqrzUXCuZO9U_mPe7suAI0xRUqiDLmNIiz5QUEnKpnbTpGL1ccg-x_u2gac2-7mLoTxomRCaoYpL31uvF2vlQ2JM3h-h_bDwbSszQnhnaM9f20j8vx2CH</recordid><startdate>20220504</startdate><enddate>20220504</enddate><creator>Sehrish</creator><creator>Shah, Said Anwar</creator><creator>Mouldi, Abir</creator><creator>Sene, Ndolane</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8664-6464</orcidid></search><sort><creationdate>20220504</creationdate><title>Nonlinear Convective SiO2 and TiO2 Hybrid Nanofluid Flow over an Inclined Stretched Surface</title><author>Sehrish ; Shah, Said Anwar ; Mouldi, Abir ; Sene, Ndolane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-efc9a7d1095eca8bf95987bc8952ba8b8aec0291e838e442896b48767eb79c7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>Climate change</topic><topic>Convection</topic><topic>Drag</topic><topic>Engineering</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Fossil fuels</topic><topic>Heat transfer</topic><topic>Magnetic fields</topic><topic>Mass transfer</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Outdoor air quality</topic><topic>Parameters</topic><topic>Permeability</topic><topic>Physical properties</topic><topic>Renewable resources</topic><topic>Researchers</topic><topic>Silicon dioxide</topic><topic>Solar energy</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sehrish</creatorcontrib><creatorcontrib>Shah, Said Anwar</creatorcontrib><creatorcontrib>Mouldi, Abir</creatorcontrib><creatorcontrib>Sene, Ndolane</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sehrish</au><au>Shah, Said Anwar</au><au>Mouldi, Abir</au><au>Sene, Ndolane</au><au>Khan, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Convective SiO2 and TiO2 Hybrid Nanofluid Flow over an Inclined Stretched Surface</atitle><jtitle>Journal of nanomaterials</jtitle><date>2022-05-04</date><risdate>2022</risdate><volume>2022</volume><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>The hybrid nanofluid is extensively used in manufacturing commercial applications due to its high exceptional capacity to increase the heat transfer rate. As a result, in the existence of nonlinear convection, the hybrid nanofluid is considered to flow on an inclined plane. The nonlinear convection has many applications in real life and is more relevant to the natural flow avoiding the flow restrictions. The focus has been executed on the thermal and mass Grashof numbers to analyse the fluid motion in the presence of these parameters for nonlinear nature. Moreover, the hybrid nanofluid flow analysis has been done to investigate the heat transfer analysis. The modelled equations are solved through an analytical approach. The heat and mass transfer rates and drag force are calculated under the influence of various physical parameters. The new parameter of the Grashof numbers improves the fluid motion for its larger values, and consequently, the fluid rapidly falls down from the inclined plane. The obtained outputs show that hybrid nanofluids are more effective in heat transfer analysis as compared to other conventional fluids.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/6237698</doi><orcidid>https://orcid.org/0000-0002-8664-6464</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-4110 |
ispartof | Journal of nanomaterials, 2022-05, Vol.2022 |
issn | 1687-4110 1687-4129 |
language | eng |
recordid | cdi_proquest_journals_2664618275 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alternative energy sources Climate change Convection Drag Engineering Fluid flow Fluids Fossil fuels Heat transfer Magnetic fields Mass transfer Nanofluids Nanomaterials Outdoor air quality Parameters Permeability Physical properties Renewable resources Researchers Silicon dioxide Solar energy Titanium dioxide |
title | Nonlinear Convective SiO2 and TiO2 Hybrid Nanofluid Flow over an Inclined Stretched Surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hinda&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Convective%20SiO2%20and%20TiO2%20Hybrid%20Nanofluid%20Flow%20over%20an%20Inclined%20Stretched%20Surface&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Sehrish&rft.date=2022-05-04&rft.volume=2022&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2022/6237698&rft_dat=%3Cproquest_hinda%3E2664618275%3C/proquest_hinda%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664618275&rft_id=info:pmid/&rfr_iscdi=true |