Nonlinear Convective SiO2 and TiO2 Hybrid Nanofluid Flow over an Inclined Stretched Surface

The hybrid nanofluid is extensively used in manufacturing commercial applications due to its high exceptional capacity to increase the heat transfer rate. As a result, in the existence of nonlinear convection, the hybrid nanofluid is considered to flow on an inclined plane. The nonlinear convection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2022-05, Vol.2022
Hauptverfasser: Sehrish, Shah, Said Anwar, Mouldi, Abir, Sene, Ndolane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of nanomaterials
container_volume 2022
creator Sehrish
Shah, Said Anwar
Mouldi, Abir
Sene, Ndolane
description The hybrid nanofluid is extensively used in manufacturing commercial applications due to its high exceptional capacity to increase the heat transfer rate. As a result, in the existence of nonlinear convection, the hybrid nanofluid is considered to flow on an inclined plane. The nonlinear convection has many applications in real life and is more relevant to the natural flow avoiding the flow restrictions. The focus has been executed on the thermal and mass Grashof numbers to analyse the fluid motion in the presence of these parameters for nonlinear nature. Moreover, the hybrid nanofluid flow analysis has been done to investigate the heat transfer analysis. The modelled equations are solved through an analytical approach. The heat and mass transfer rates and drag force are calculated under the influence of various physical parameters. The new parameter of the Grashof numbers improves the fluid motion for its larger values, and consequently, the fluid rapidly falls down from the inclined plane. The obtained outputs show that hybrid nanofluids are more effective in heat transfer analysis as compared to other conventional fluids.
doi_str_mv 10.1155/2022/6237698
format Article
fullrecord <record><control><sourceid>proquest_hinda</sourceid><recordid>TN_cdi_proquest_journals_2664618275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664618275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-efc9a7d1095eca8bf95987bc8952ba8b8aec0291e838e442896b48767eb79c7a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZv_oAFjxK7u8l-HaVYWyjtofXkYdlsJnRL3NRN0tJ_b0KLp3kGHt4ZXoSeKXmjlPMJI4xNBEul0OoGjahQMsko07f_TMk9emiaPSEZ15yN0PeqDpUPYCOe1uEIrvVHwBu_ZtiGAm8HmJ_z6Au8sqEuq66nWVWfcH2E2Dt4EdwQUOBNG6F1u4G6WFoHj-iutFUDT9c5Rl-zj-10nizXn4vp-zJxLCVtAqXTVhaUaA7OqrzUXCuZO9U_mPe7suAI0xRUqiDLmNIiz5QUEnKpnbTpGL1ccg-x_u2gac2-7mLoTxomRCaoYpL31uvF2vlQ2JM3h-h_bDwbSszQnhnaM9f20j8vx2CH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664618275</pqid></control><display><type>article</type><title>Nonlinear Convective SiO2 and TiO2 Hybrid Nanofluid Flow over an Inclined Stretched Surface</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sehrish ; Shah, Said Anwar ; Mouldi, Abir ; Sene, Ndolane</creator><contributor>Khan, Amir</contributor><creatorcontrib>Sehrish ; Shah, Said Anwar ; Mouldi, Abir ; Sene, Ndolane ; Khan, Amir</creatorcontrib><description>The hybrid nanofluid is extensively used in manufacturing commercial applications due to its high exceptional capacity to increase the heat transfer rate. As a result, in the existence of nonlinear convection, the hybrid nanofluid is considered to flow on an inclined plane. The nonlinear convection has many applications in real life and is more relevant to the natural flow avoiding the flow restrictions. The focus has been executed on the thermal and mass Grashof numbers to analyse the fluid motion in the presence of these parameters for nonlinear nature. Moreover, the hybrid nanofluid flow analysis has been done to investigate the heat transfer analysis. The modelled equations are solved through an analytical approach. The heat and mass transfer rates and drag force are calculated under the influence of various physical parameters. The new parameter of the Grashof numbers improves the fluid motion for its larger values, and consequently, the fluid rapidly falls down from the inclined plane. The obtained outputs show that hybrid nanofluids are more effective in heat transfer analysis as compared to other conventional fluids.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2022/6237698</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Alternative energy sources ; Climate change ; Convection ; Drag ; Engineering ; Fluid flow ; Fluids ; Fossil fuels ; Heat transfer ; Magnetic fields ; Mass transfer ; Nanofluids ; Nanomaterials ; Outdoor air quality ; Parameters ; Permeability ; Physical properties ; Renewable resources ; Researchers ; Silicon dioxide ; Solar energy ; Titanium dioxide</subject><ispartof>Journal of nanomaterials, 2022-05, Vol.2022</ispartof><rights>Copyright © 2022 Sehrish et al.</rights><rights>Copyright © 2022 Sehrish et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c230t-efc9a7d1095eca8bf95987bc8952ba8b8aec0291e838e442896b48767eb79c7a3</citedby><orcidid>0000-0002-8664-6464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Khan, Amir</contributor><creatorcontrib>Sehrish</creatorcontrib><creatorcontrib>Shah, Said Anwar</creatorcontrib><creatorcontrib>Mouldi, Abir</creatorcontrib><creatorcontrib>Sene, Ndolane</creatorcontrib><title>Nonlinear Convective SiO2 and TiO2 Hybrid Nanofluid Flow over an Inclined Stretched Surface</title><title>Journal of nanomaterials</title><description>The hybrid nanofluid is extensively used in manufacturing commercial applications due to its high exceptional capacity to increase the heat transfer rate. As a result, in the existence of nonlinear convection, the hybrid nanofluid is considered to flow on an inclined plane. The nonlinear convection has many applications in real life and is more relevant to the natural flow avoiding the flow restrictions. The focus has been executed on the thermal and mass Grashof numbers to analyse the fluid motion in the presence of these parameters for nonlinear nature. Moreover, the hybrid nanofluid flow analysis has been done to investigate the heat transfer analysis. The modelled equations are solved through an analytical approach. The heat and mass transfer rates and drag force are calculated under the influence of various physical parameters. The new parameter of the Grashof numbers improves the fluid motion for its larger values, and consequently, the fluid rapidly falls down from the inclined plane. The obtained outputs show that hybrid nanofluids are more effective in heat transfer analysis as compared to other conventional fluids.</description><subject>Alternative energy sources</subject><subject>Climate change</subject><subject>Convection</subject><subject>Drag</subject><subject>Engineering</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Fossil fuels</subject><subject>Heat transfer</subject><subject>Magnetic fields</subject><subject>Mass transfer</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Outdoor air quality</subject><subject>Parameters</subject><subject>Permeability</subject><subject>Physical properties</subject><subject>Renewable resources</subject><subject>Researchers</subject><subject>Silicon dioxide</subject><subject>Solar energy</subject><subject>Titanium dioxide</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZv_oAFjxK7u8l-HaVYWyjtofXkYdlsJnRL3NRN0tJ_b0KLp3kGHt4ZXoSeKXmjlPMJI4xNBEul0OoGjahQMsko07f_TMk9emiaPSEZ15yN0PeqDpUPYCOe1uEIrvVHwBu_ZtiGAm8HmJ_z6Au8sqEuq66nWVWfcH2E2Dt4EdwQUOBNG6F1u4G6WFoHj-iutFUDT9c5Rl-zj-10nizXn4vp-zJxLCVtAqXTVhaUaA7OqrzUXCuZO9U_mPe7suAI0xRUqiDLmNIiz5QUEnKpnbTpGL1ccg-x_u2gac2-7mLoTxomRCaoYpL31uvF2vlQ2JM3h-h_bDwbSszQnhnaM9f20j8vx2CH</recordid><startdate>20220504</startdate><enddate>20220504</enddate><creator>Sehrish</creator><creator>Shah, Said Anwar</creator><creator>Mouldi, Abir</creator><creator>Sene, Ndolane</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8664-6464</orcidid></search><sort><creationdate>20220504</creationdate><title>Nonlinear Convective SiO2 and TiO2 Hybrid Nanofluid Flow over an Inclined Stretched Surface</title><author>Sehrish ; Shah, Said Anwar ; Mouldi, Abir ; Sene, Ndolane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-efc9a7d1095eca8bf95987bc8952ba8b8aec0291e838e442896b48767eb79c7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>Climate change</topic><topic>Convection</topic><topic>Drag</topic><topic>Engineering</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Fossil fuels</topic><topic>Heat transfer</topic><topic>Magnetic fields</topic><topic>Mass transfer</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Outdoor air quality</topic><topic>Parameters</topic><topic>Permeability</topic><topic>Physical properties</topic><topic>Renewable resources</topic><topic>Researchers</topic><topic>Silicon dioxide</topic><topic>Solar energy</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sehrish</creatorcontrib><creatorcontrib>Shah, Said Anwar</creatorcontrib><creatorcontrib>Mouldi, Abir</creatorcontrib><creatorcontrib>Sene, Ndolane</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sehrish</au><au>Shah, Said Anwar</au><au>Mouldi, Abir</au><au>Sene, Ndolane</au><au>Khan, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Convective SiO2 and TiO2 Hybrid Nanofluid Flow over an Inclined Stretched Surface</atitle><jtitle>Journal of nanomaterials</jtitle><date>2022-05-04</date><risdate>2022</risdate><volume>2022</volume><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>The hybrid nanofluid is extensively used in manufacturing commercial applications due to its high exceptional capacity to increase the heat transfer rate. As a result, in the existence of nonlinear convection, the hybrid nanofluid is considered to flow on an inclined plane. The nonlinear convection has many applications in real life and is more relevant to the natural flow avoiding the flow restrictions. The focus has been executed on the thermal and mass Grashof numbers to analyse the fluid motion in the presence of these parameters for nonlinear nature. Moreover, the hybrid nanofluid flow analysis has been done to investigate the heat transfer analysis. The modelled equations are solved through an analytical approach. The heat and mass transfer rates and drag force are calculated under the influence of various physical parameters. The new parameter of the Grashof numbers improves the fluid motion for its larger values, and consequently, the fluid rapidly falls down from the inclined plane. The obtained outputs show that hybrid nanofluids are more effective in heat transfer analysis as compared to other conventional fluids.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/6237698</doi><orcidid>https://orcid.org/0000-0002-8664-6464</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-4110
ispartof Journal of nanomaterials, 2022-05, Vol.2022
issn 1687-4110
1687-4129
language eng
recordid cdi_proquest_journals_2664618275
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alternative energy sources
Climate change
Convection
Drag
Engineering
Fluid flow
Fluids
Fossil fuels
Heat transfer
Magnetic fields
Mass transfer
Nanofluids
Nanomaterials
Outdoor air quality
Parameters
Permeability
Physical properties
Renewable resources
Researchers
Silicon dioxide
Solar energy
Titanium dioxide
title Nonlinear Convective SiO2 and TiO2 Hybrid Nanofluid Flow over an Inclined Stretched Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hinda&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Convective%20SiO2%20and%20TiO2%20Hybrid%20Nanofluid%20Flow%20over%20an%20Inclined%20Stretched%20Surface&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Sehrish&rft.date=2022-05-04&rft.volume=2022&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2022/6237698&rft_dat=%3Cproquest_hinda%3E2664618275%3C/proquest_hinda%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664618275&rft_id=info:pmid/&rfr_iscdi=true