An experimental test of the Mocikat-Herwig theory of local turbulent heat transfer measurements on cold objects

Experimental results are presented of a test of the theory of local turbulent heat transfer measurements proposed by Mocikat and Herwig in 2007. A miniaturized multi-layer heat transfer sensor was developed and employed in this study. The new heat transfer sensor was designed to work in air and liqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat and mass transfer 2022-06, Vol.58 (6), p.1041-1055
Hauptverfasser: Kapitz, Marek, der Wiesche, Stefan aus, Kadic, Samir, Strehle, Steffen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1055
container_issue 6
container_start_page 1041
container_title Heat and mass transfer
container_volume 58
creator Kapitz, Marek
der Wiesche, Stefan aus
Kadic, Samir
Strehle, Steffen
description Experimental results are presented of a test of the theory of local turbulent heat transfer measurements proposed by Mocikat and Herwig in 2007. A miniaturized multi-layer heat transfer sensor was developed and employed in this study. The new heat transfer sensor was designed to work in air and liquids, and this capability enabled the simultaneous investigation of different Prandtl numbers. Two basic configurations, namely the flow past a blunt plate and the flow past an inclined square cylinder, were investigated in test sections of wind and water tunnels. Convective heat transfer coefficients were obtained through conventional testing (i.e., employing thoroughly heated test objects) and using the new miniaturized sensor approach (i.e., utilizing cold test objects without heating). The main prediction of the Mocikat-Herwig theory that a specific thermal adjustment coefficient of the employed actual miniaturized heat transfer sensor should exist in the fully turbulent flow regime was proven for developed two-dimensional flow. The observed effect of the Prandtl number on this coefficient was in good agreement with the prediction of the asymptotic expansion method. The square cylinder results indicated the inherent limits of the local turbulent heat transfer measurement approach, as suggested by Mocikat and Herwig.
doi_str_mv 10.1007/s00231-021-03158-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2664478137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664478137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-a2ff55572f6a0740cc11fa7421662179174484bf5393690dd4ec2da48a7da7e73</originalsourceid><addsrcrecordid>eNp9kM1OAyEURonRxFp9AVckrlEuMMPMsmnUmtS40TWhDPTH6VCBifbtZRwTdy7ITbjn-wgHoWugt0CpvIuUMg6Esnw4FBU5nqAJCM4IQAWnaEJrIYkUAOfoIsZdxkvB-AT5WYft18GG7d52Sbc42ZiwdzhtLH72ZvuuE1nY8LldD1c-HIdl682A9mHVtzmGN1YnnILuorMB762OfbBDYcS-w8a3DfarnTUpXqIzp9tor37nFL093L_OF2T58vg0ny2J4SAS0cy5oigkc6WmUlBjAJyWgkFZMpA1SCEqsXIFr3lZ06YR1rBGi0rLRksr-RTdjL2H4D_6_Ce1833o8pOKlaUQsgI-UGykTPAxBuvUIYvQ4aiAqkGsGsWqLFb9iFXHHOJjKGa4W9vwV_1P6htLz3zR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664478137</pqid></control><display><type>article</type><title>An experimental test of the Mocikat-Herwig theory of local turbulent heat transfer measurements on cold objects</title><source>SpringerNature Journals</source><creator>Kapitz, Marek ; der Wiesche, Stefan aus ; Kadic, Samir ; Strehle, Steffen</creator><creatorcontrib>Kapitz, Marek ; der Wiesche, Stefan aus ; Kadic, Samir ; Strehle, Steffen</creatorcontrib><description>Experimental results are presented of a test of the theory of local turbulent heat transfer measurements proposed by Mocikat and Herwig in 2007. A miniaturized multi-layer heat transfer sensor was developed and employed in this study. The new heat transfer sensor was designed to work in air and liquids, and this capability enabled the simultaneous investigation of different Prandtl numbers. Two basic configurations, namely the flow past a blunt plate and the flow past an inclined square cylinder, were investigated in test sections of wind and water tunnels. Convective heat transfer coefficients were obtained through conventional testing (i.e., employing thoroughly heated test objects) and using the new miniaturized sensor approach (i.e., utilizing cold test objects without heating). The main prediction of the Mocikat-Herwig theory that a specific thermal adjustment coefficient of the employed actual miniaturized heat transfer sensor should exist in the fully turbulent flow regime was proven for developed two-dimensional flow. The observed effect of the Prandtl number on this coefficient was in good agreement with the prediction of the asymptotic expansion method. The square cylinder results indicated the inherent limits of the local turbulent heat transfer measurement approach, as suggested by Mocikat and Herwig.</description><identifier>ISSN: 0947-7411</identifier><identifier>EISSN: 1432-1181</identifier><identifier>DOI: 10.1007/s00231-021-03158-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic methods ; Asymptotic series ; Convective heat transfer ; Cylinders ; Engineering ; Engineering Thermodynamics ; Heat and Mass Transfer ; Heat transfer ; Heat transfer coefficients ; Industrial Chemistry/Chemical Engineering ; Multilayers ; Object recognition ; Original Article ; Prandtl number ; Sensors ; Thermodynamics ; Turbulent flow ; Turbulent heat transfer ; Two dimensional flow</subject><ispartof>Heat and mass transfer, 2022-06, Vol.58 (6), p.1041-1055</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-a2ff55572f6a0740cc11fa7421662179174484bf5393690dd4ec2da48a7da7e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00231-021-03158-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00231-021-03158-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kapitz, Marek</creatorcontrib><creatorcontrib>der Wiesche, Stefan aus</creatorcontrib><creatorcontrib>Kadic, Samir</creatorcontrib><creatorcontrib>Strehle, Steffen</creatorcontrib><title>An experimental test of the Mocikat-Herwig theory of local turbulent heat transfer measurements on cold objects</title><title>Heat and mass transfer</title><addtitle>Heat Mass Transfer</addtitle><description>Experimental results are presented of a test of the theory of local turbulent heat transfer measurements proposed by Mocikat and Herwig in 2007. A miniaturized multi-layer heat transfer sensor was developed and employed in this study. The new heat transfer sensor was designed to work in air and liquids, and this capability enabled the simultaneous investigation of different Prandtl numbers. Two basic configurations, namely the flow past a blunt plate and the flow past an inclined square cylinder, were investigated in test sections of wind and water tunnels. Convective heat transfer coefficients were obtained through conventional testing (i.e., employing thoroughly heated test objects) and using the new miniaturized sensor approach (i.e., utilizing cold test objects without heating). The main prediction of the Mocikat-Herwig theory that a specific thermal adjustment coefficient of the employed actual miniaturized heat transfer sensor should exist in the fully turbulent flow regime was proven for developed two-dimensional flow. The observed effect of the Prandtl number on this coefficient was in good agreement with the prediction of the asymptotic expansion method. The square cylinder results indicated the inherent limits of the local turbulent heat transfer measurement approach, as suggested by Mocikat and Herwig.</description><subject>Asymptotic methods</subject><subject>Asymptotic series</subject><subject>Convective heat transfer</subject><subject>Cylinders</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Multilayers</subject><subject>Object recognition</subject><subject>Original Article</subject><subject>Prandtl number</subject><subject>Sensors</subject><subject>Thermodynamics</subject><subject>Turbulent flow</subject><subject>Turbulent heat transfer</subject><subject>Two dimensional flow</subject><issn>0947-7411</issn><issn>1432-1181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1OAyEURonRxFp9AVckrlEuMMPMsmnUmtS40TWhDPTH6VCBifbtZRwTdy7ITbjn-wgHoWugt0CpvIuUMg6Esnw4FBU5nqAJCM4IQAWnaEJrIYkUAOfoIsZdxkvB-AT5WYft18GG7d52Sbc42ZiwdzhtLH72ZvuuE1nY8LldD1c-HIdl682A9mHVtzmGN1YnnILuorMB762OfbBDYcS-w8a3DfarnTUpXqIzp9tor37nFL093L_OF2T58vg0ny2J4SAS0cy5oigkc6WmUlBjAJyWgkFZMpA1SCEqsXIFr3lZ06YR1rBGi0rLRksr-RTdjL2H4D_6_Ce1833o8pOKlaUQsgI-UGykTPAxBuvUIYvQ4aiAqkGsGsWqLFb9iFXHHOJjKGa4W9vwV_1P6htLz3zR</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Kapitz, Marek</creator><creator>der Wiesche, Stefan aus</creator><creator>Kadic, Samir</creator><creator>Strehle, Steffen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>An experimental test of the Mocikat-Herwig theory of local turbulent heat transfer measurements on cold objects</title><author>Kapitz, Marek ; der Wiesche, Stefan aus ; Kadic, Samir ; Strehle, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-a2ff55572f6a0740cc11fa7421662179174484bf5393690dd4ec2da48a7da7e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic series</topic><topic>Convective heat transfer</topic><topic>Cylinders</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Multilayers</topic><topic>Object recognition</topic><topic>Original Article</topic><topic>Prandtl number</topic><topic>Sensors</topic><topic>Thermodynamics</topic><topic>Turbulent flow</topic><topic>Turbulent heat transfer</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapitz, Marek</creatorcontrib><creatorcontrib>der Wiesche, Stefan aus</creatorcontrib><creatorcontrib>Kadic, Samir</creatorcontrib><creatorcontrib>Strehle, Steffen</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kapitz, Marek</au><au>der Wiesche, Stefan aus</au><au>Kadic, Samir</au><au>Strehle, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental test of the Mocikat-Herwig theory of local turbulent heat transfer measurements on cold objects</atitle><jtitle>Heat and mass transfer</jtitle><stitle>Heat Mass Transfer</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>58</volume><issue>6</issue><spage>1041</spage><epage>1055</epage><pages>1041-1055</pages><issn>0947-7411</issn><eissn>1432-1181</eissn><abstract>Experimental results are presented of a test of the theory of local turbulent heat transfer measurements proposed by Mocikat and Herwig in 2007. A miniaturized multi-layer heat transfer sensor was developed and employed in this study. The new heat transfer sensor was designed to work in air and liquids, and this capability enabled the simultaneous investigation of different Prandtl numbers. Two basic configurations, namely the flow past a blunt plate and the flow past an inclined square cylinder, were investigated in test sections of wind and water tunnels. Convective heat transfer coefficients were obtained through conventional testing (i.e., employing thoroughly heated test objects) and using the new miniaturized sensor approach (i.e., utilizing cold test objects without heating). The main prediction of the Mocikat-Herwig theory that a specific thermal adjustment coefficient of the employed actual miniaturized heat transfer sensor should exist in the fully turbulent flow regime was proven for developed two-dimensional flow. The observed effect of the Prandtl number on this coefficient was in good agreement with the prediction of the asymptotic expansion method. The square cylinder results indicated the inherent limits of the local turbulent heat transfer measurement approach, as suggested by Mocikat and Herwig.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00231-021-03158-y</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-7411
ispartof Heat and mass transfer, 2022-06, Vol.58 (6), p.1041-1055
issn 0947-7411
1432-1181
language eng
recordid cdi_proquest_journals_2664478137
source SpringerNature Journals
subjects Asymptotic methods
Asymptotic series
Convective heat transfer
Cylinders
Engineering
Engineering Thermodynamics
Heat and Mass Transfer
Heat transfer
Heat transfer coefficients
Industrial Chemistry/Chemical Engineering
Multilayers
Object recognition
Original Article
Prandtl number
Sensors
Thermodynamics
Turbulent flow
Turbulent heat transfer
Two dimensional flow
title An experimental test of the Mocikat-Herwig theory of local turbulent heat transfer measurements on cold objects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20test%20of%20the%20Mocikat-Herwig%20theory%20of%20local%20turbulent%20heat%20transfer%20measurements%20on%20cold%20objects&rft.jtitle=Heat%20and%20mass%20transfer&rft.au=Kapitz,%20Marek&rft.date=2022-06-01&rft.volume=58&rft.issue=6&rft.spage=1041&rft.epage=1055&rft.pages=1041-1055&rft.issn=0947-7411&rft.eissn=1432-1181&rft_id=info:doi/10.1007/s00231-021-03158-y&rft_dat=%3Cproquest_cross%3E2664478137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664478137&rft_id=info:pmid/&rfr_iscdi=true