Heat extraction from hot dry rock by super-long gravity heat pipe: Effect of key parameters
Extracting hot dry rock energy by super-long gravity heat pipe in a single-well is a novel technical scheme proposed recently. The potential superiority of this scheme is related to its environmental friendliness, economic and technologic feasibility, but the key parameters affecting its performance...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2022-06, Vol.248, p.123527, Article 123527 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 123527 |
container_title | Energy (Oxford) |
container_volume | 248 |
creator | Huang, Wenbo Chen, Juanwen Cen, Jiwen Cao, Wenjiong Li, Zhibin Li, Feng Jiang, Fangming |
description | Extracting hot dry rock energy by super-long gravity heat pipe in a single-well is a novel technical scheme proposed recently. The potential superiority of this scheme is related to its environmental friendliness, economic and technologic feasibility, but the key parameters affecting its performance are not well understood. To this purpose, a detailed sensitivity analysis using a dedicated numerical simulation model is conducted for a 4000 m long gravity heat pipe with water as the working fluid. The analysis considers a wide range of working conditions with the aim of better understanding the effects of operating and structural design variables. It is found that the thermal performance is strongly enhanced with the increasing heat pipe diameter (100 mm–500 mm), which is attributed not only to the increase of heat transfer surface but also to the decrease of fluid flow resistance inside the heat pipe. Lowering the condensation temperature improves the thermal performance of heat pipe, whereas the effect gradually reduces and becomes insignificant when the condensation temperature is less than ∼50 °C. Thermal insulation shows the best positive effect when the insulation section reaches the position where the heat pipe temperature is just equal to the formation temperature. The low thermal conductivity of hot dry rock is confirmed to be a key bottleneck restraining the performance of the heat pipe system. The heat extraction rate can be greatly improved if the local equivalent thermal conductivity is enhanced in the region of 5 m in radius around the heat pipe. The acquired knowledge allows to develop a design strategy for practical super-long heat pipe systems taking into consideration the operating parameters and local geothermal conditions.
•Using 4000 m super-long gravity heat pipe to extract hot dry rock heat is analyzed.•Effect of operating and structural design variables is numerically studied.•Results offer insights into the design of super-long gravity heat pipe system. |
doi_str_mv | 10.1016/j.energy.2022.123527 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2664078358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544222004303</els_id><sourcerecordid>2664078358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b54686b2eb08d2b72f2d82f47812a20718859e26bc36292f6b5d4237f7ef0d193</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvjDygsUWexx4ntUCAhxEtCooGKwspjvGRh4zD2IvL3ZBVqqmnuuaN7GDuTYimF1BfrJfZIq3EJAmApQRVg9thCWqMybWyxzxZCaZEVeQ6H7CjGtRCisGW5YG8PWCWOP4mqJnWh557Chr-HxFsaOYXmg9cjj9sBKfsM_YqvqPru0sjfd9zQDXjJb73HJvHg-QeOfKio2mBCiifswFefEU__7jF7vbt9uXnInp7vH2-un7JGqTxldZFrq2vAWtgWagMeWgs-N1ZCBcJIa4sSQdeN0lCC13XR5qCMN-hFK0t1zM7n3oHC1xZjcuuwpX566UDrXBirCjul8jnVUIiR0LuBuk1Fo5PC7TS6tZs1up1GN2ucsKsZw2nBd4fkYtNh32Db0bTataH7v-AXZdR8hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664078358</pqid></control><display><type>article</type><title>Heat extraction from hot dry rock by super-long gravity heat pipe: Effect of key parameters</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Wenbo ; Chen, Juanwen ; Cen, Jiwen ; Cao, Wenjiong ; Li, Zhibin ; Li, Feng ; Jiang, Fangming</creator><creatorcontrib>Huang, Wenbo ; Chen, Juanwen ; Cen, Jiwen ; Cao, Wenjiong ; Li, Zhibin ; Li, Feng ; Jiang, Fangming</creatorcontrib><description>Extracting hot dry rock energy by super-long gravity heat pipe in a single-well is a novel technical scheme proposed recently. The potential superiority of this scheme is related to its environmental friendliness, economic and technologic feasibility, but the key parameters affecting its performance are not well understood. To this purpose, a detailed sensitivity analysis using a dedicated numerical simulation model is conducted for a 4000 m long gravity heat pipe with water as the working fluid. The analysis considers a wide range of working conditions with the aim of better understanding the effects of operating and structural design variables. It is found that the thermal performance is strongly enhanced with the increasing heat pipe diameter (100 mm–500 mm), which is attributed not only to the increase of heat transfer surface but also to the decrease of fluid flow resistance inside the heat pipe. Lowering the condensation temperature improves the thermal performance of heat pipe, whereas the effect gradually reduces and becomes insignificant when the condensation temperature is less than ∼50 °C. Thermal insulation shows the best positive effect when the insulation section reaches the position where the heat pipe temperature is just equal to the formation temperature. The low thermal conductivity of hot dry rock is confirmed to be a key bottleneck restraining the performance of the heat pipe system. The heat extraction rate can be greatly improved if the local equivalent thermal conductivity is enhanced in the region of 5 m in radius around the heat pipe. The acquired knowledge allows to develop a design strategy for practical super-long heat pipe systems taking into consideration the operating parameters and local geothermal conditions.
•Using 4000 m super-long gravity heat pipe to extract hot dry rock heat is analyzed.•Effect of operating and structural design variables is numerically studied.•Results offer insights into the design of super-long gravity heat pipe system.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2022.123527</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Deep geothermal energy ; Diameters ; Flow resistance ; Fluid dynamics ; Fluid flow ; Heat conductivity ; Heat pipes ; Heat transfer ; Heat treatment ; Hot dry rock ; Knowledge acquisition ; Mathematical models ; Parameters ; Rocks ; Sensitivity analysis ; Single-well geothermal system ; Structural design ; Structural engineering ; Super-long gravity heat pipe ; Thermal conductivity ; Thermal insulation ; Working conditions ; Working fluids</subject><ispartof>Energy (Oxford), 2022-06, Vol.248, p.123527, Article 123527</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b54686b2eb08d2b72f2d82f47812a20718859e26bc36292f6b5d4237f7ef0d193</citedby><cites>FETCH-LOGICAL-c334t-b54686b2eb08d2b72f2d82f47812a20718859e26bc36292f6b5d4237f7ef0d193</cites><orcidid>0000-0003-3127-0014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544222004303$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Huang, Wenbo</creatorcontrib><creatorcontrib>Chen, Juanwen</creatorcontrib><creatorcontrib>Cen, Jiwen</creatorcontrib><creatorcontrib>Cao, Wenjiong</creatorcontrib><creatorcontrib>Li, Zhibin</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Jiang, Fangming</creatorcontrib><title>Heat extraction from hot dry rock by super-long gravity heat pipe: Effect of key parameters</title><title>Energy (Oxford)</title><description>Extracting hot dry rock energy by super-long gravity heat pipe in a single-well is a novel technical scheme proposed recently. The potential superiority of this scheme is related to its environmental friendliness, economic and technologic feasibility, but the key parameters affecting its performance are not well understood. To this purpose, a detailed sensitivity analysis using a dedicated numerical simulation model is conducted for a 4000 m long gravity heat pipe with water as the working fluid. The analysis considers a wide range of working conditions with the aim of better understanding the effects of operating and structural design variables. It is found that the thermal performance is strongly enhanced with the increasing heat pipe diameter (100 mm–500 mm), which is attributed not only to the increase of heat transfer surface but also to the decrease of fluid flow resistance inside the heat pipe. Lowering the condensation temperature improves the thermal performance of heat pipe, whereas the effect gradually reduces and becomes insignificant when the condensation temperature is less than ∼50 °C. Thermal insulation shows the best positive effect when the insulation section reaches the position where the heat pipe temperature is just equal to the formation temperature. The low thermal conductivity of hot dry rock is confirmed to be a key bottleneck restraining the performance of the heat pipe system. The heat extraction rate can be greatly improved if the local equivalent thermal conductivity is enhanced in the region of 5 m in radius around the heat pipe. The acquired knowledge allows to develop a design strategy for practical super-long heat pipe systems taking into consideration the operating parameters and local geothermal conditions.
•Using 4000 m super-long gravity heat pipe to extract hot dry rock heat is analyzed.•Effect of operating and structural design variables is numerically studied.•Results offer insights into the design of super-long gravity heat pipe system.</description><subject>Deep geothermal energy</subject><subject>Diameters</subject><subject>Flow resistance</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Heat conductivity</subject><subject>Heat pipes</subject><subject>Heat transfer</subject><subject>Heat treatment</subject><subject>Hot dry rock</subject><subject>Knowledge acquisition</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Rocks</subject><subject>Sensitivity analysis</subject><subject>Single-well geothermal system</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>Super-long gravity heat pipe</subject><subject>Thermal conductivity</subject><subject>Thermal insulation</subject><subject>Working conditions</subject><subject>Working fluids</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvjDygsUWexx4ntUCAhxEtCooGKwspjvGRh4zD2IvL3ZBVqqmnuuaN7GDuTYimF1BfrJfZIq3EJAmApQRVg9thCWqMybWyxzxZCaZEVeQ6H7CjGtRCisGW5YG8PWCWOP4mqJnWh557Chr-HxFsaOYXmg9cjj9sBKfsM_YqvqPru0sjfd9zQDXjJb73HJvHg-QeOfKio2mBCiifswFefEU__7jF7vbt9uXnInp7vH2-un7JGqTxldZFrq2vAWtgWagMeWgs-N1ZCBcJIa4sSQdeN0lCC13XR5qCMN-hFK0t1zM7n3oHC1xZjcuuwpX566UDrXBirCjul8jnVUIiR0LuBuk1Fo5PC7TS6tZs1up1GN2ucsKsZw2nBd4fkYtNh32Db0bTataH7v-AXZdR8hw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Huang, Wenbo</creator><creator>Chen, Juanwen</creator><creator>Cen, Jiwen</creator><creator>Cao, Wenjiong</creator><creator>Li, Zhibin</creator><creator>Li, Feng</creator><creator>Jiang, Fangming</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3127-0014</orcidid></search><sort><creationdate>20220601</creationdate><title>Heat extraction from hot dry rock by super-long gravity heat pipe: Effect of key parameters</title><author>Huang, Wenbo ; Chen, Juanwen ; Cen, Jiwen ; Cao, Wenjiong ; Li, Zhibin ; Li, Feng ; Jiang, Fangming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b54686b2eb08d2b72f2d82f47812a20718859e26bc36292f6b5d4237f7ef0d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deep geothermal energy</topic><topic>Diameters</topic><topic>Flow resistance</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Heat conductivity</topic><topic>Heat pipes</topic><topic>Heat transfer</topic><topic>Heat treatment</topic><topic>Hot dry rock</topic><topic>Knowledge acquisition</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Rocks</topic><topic>Sensitivity analysis</topic><topic>Single-well geothermal system</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>Super-long gravity heat pipe</topic><topic>Thermal conductivity</topic><topic>Thermal insulation</topic><topic>Working conditions</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Wenbo</creatorcontrib><creatorcontrib>Chen, Juanwen</creatorcontrib><creatorcontrib>Cen, Jiwen</creatorcontrib><creatorcontrib>Cao, Wenjiong</creatorcontrib><creatorcontrib>Li, Zhibin</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Jiang, Fangming</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Wenbo</au><au>Chen, Juanwen</au><au>Cen, Jiwen</au><au>Cao, Wenjiong</au><au>Li, Zhibin</au><au>Li, Feng</au><au>Jiang, Fangming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat extraction from hot dry rock by super-long gravity heat pipe: Effect of key parameters</atitle><jtitle>Energy (Oxford)</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>248</volume><spage>123527</spage><pages>123527-</pages><artnum>123527</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>Extracting hot dry rock energy by super-long gravity heat pipe in a single-well is a novel technical scheme proposed recently. The potential superiority of this scheme is related to its environmental friendliness, economic and technologic feasibility, but the key parameters affecting its performance are not well understood. To this purpose, a detailed sensitivity analysis using a dedicated numerical simulation model is conducted for a 4000 m long gravity heat pipe with water as the working fluid. The analysis considers a wide range of working conditions with the aim of better understanding the effects of operating and structural design variables. It is found that the thermal performance is strongly enhanced with the increasing heat pipe diameter (100 mm–500 mm), which is attributed not only to the increase of heat transfer surface but also to the decrease of fluid flow resistance inside the heat pipe. Lowering the condensation temperature improves the thermal performance of heat pipe, whereas the effect gradually reduces and becomes insignificant when the condensation temperature is less than ∼50 °C. Thermal insulation shows the best positive effect when the insulation section reaches the position where the heat pipe temperature is just equal to the formation temperature. The low thermal conductivity of hot dry rock is confirmed to be a key bottleneck restraining the performance of the heat pipe system. The heat extraction rate can be greatly improved if the local equivalent thermal conductivity is enhanced in the region of 5 m in radius around the heat pipe. The acquired knowledge allows to develop a design strategy for practical super-long heat pipe systems taking into consideration the operating parameters and local geothermal conditions.
•Using 4000 m super-long gravity heat pipe to extract hot dry rock heat is analyzed.•Effect of operating and structural design variables is numerically studied.•Results offer insights into the design of super-long gravity heat pipe system.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2022.123527</doi><orcidid>https://orcid.org/0000-0003-3127-0014</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2022-06, Vol.248, p.123527, Article 123527 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2664078358 |
source | Elsevier ScienceDirect Journals |
subjects | Deep geothermal energy Diameters Flow resistance Fluid dynamics Fluid flow Heat conductivity Heat pipes Heat transfer Heat treatment Hot dry rock Knowledge acquisition Mathematical models Parameters Rocks Sensitivity analysis Single-well geothermal system Structural design Structural engineering Super-long gravity heat pipe Thermal conductivity Thermal insulation Working conditions Working fluids |
title | Heat extraction from hot dry rock by super-long gravity heat pipe: Effect of key parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20extraction%20from%20hot%20dry%20rock%20by%20super-long%20gravity%20heat%20pipe:%20Effect%20of%20key%20parameters&rft.jtitle=Energy%20(Oxford)&rft.au=Huang,%20Wenbo&rft.date=2022-06-01&rft.volume=248&rft.spage=123527&rft.pages=123527-&rft.artnum=123527&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2022.123527&rft_dat=%3Cproquest_cross%3E2664078358%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664078358&rft_id=info:pmid/&rft_els_id=S0360544222004303&rfr_iscdi=true |