Classification of lines, spaces, and edges of resist patterns in scanning electron microscopy images using unsupervised machine learning
As key steps of lithography, the development of resist materials and the exploration of new materials are important to meet market demands from the semiconductor industry. During the development, resist materials are usually evaluated by the information extracted from their scanning electron microsc...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2022-05, Vol.61 (5), p.56505 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 56505 |
container_title | Japanese Journal of Applied Physics |
container_volume | 61 |
creator | Jin, Yuqing Kozawa, Takahiro |
description | As key steps of lithography, the development of resist materials and the exploration of new materials are important to meet market demands from the semiconductor industry. During the development, resist materials are usually evaluated by the information extracted from their scanning electron microscopy (SEM) images. The information extracted from SEM images is not always accurate owing to technical limitation. Accurate information extraction is also useful for the prediction of an etched substrate pattern. In this paper, we reported a strategy to classify the image pixels of line-and-space resist patterns into line, space, and edge classes, using unsupervised machine learning. Brightness and coordination information was integrated into the classification method. The high reliability in classification was demonstrated by hierarchical clustering based on its information integrating ability. Among all the methods of hierarchical clustering examined, the centroid method was the most accurate strategy for extracting information from a single SEM image. |
doi_str_mv | 10.35848/1347-4065/ac56b5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2664072616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664072616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-4c4dc6ee0f69ce3c1bb18be43c78ac3f56bc08f43506e906437c93bed55d94d73</originalsourceid><addsrcrecordid>eNp1kM1u1TAQhS0EEpfCA7CzxIYFae34J8myumoBqRIbWFvOZFJ8leu4nqRS36CPjdOLyoauRvZ854zOYeyjFOfKtLq9kEo3lRbWXHgwtjev2O756zXbCVHLSnd1_Za9IzqUpzVa7tjjfvJEYQzglzBHPo98ChHpC6fkYZs-DhyHW6Rtl5ECLTz5ZcEciYfICXyMId5ynBCWXDyOAfJMMKcHHo5-U660AWukNWG-D4QDP3r4XQ7xCX3e5O_Zm9FPhB_-zjP26_rq5_5bdfPj6_f95U0FWoql0qAHsIhitB2gAtn3su1RK2haD2os0UG0o1ZGWOyE1aqBTvU4GDN0emjUGft08k15vluRFneY1xzLSVdbq0VTW2kLJU_UloQyji7lkiU_OCncU-Fua9dt7bpT4UXz-aQJc_pnejj45Kx0xgljjTAuDWNBq_-gL1v_AYRDktY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664072616</pqid></control><display><type>article</type><title>Classification of lines, spaces, and edges of resist patterns in scanning electron microscopy images using unsupervised machine learning</title><source>Institute of Physics Journals</source><creator>Jin, Yuqing ; Kozawa, Takahiro</creator><creatorcontrib>Jin, Yuqing ; Kozawa, Takahiro</creatorcontrib><description>As key steps of lithography, the development of resist materials and the exploration of new materials are important to meet market demands from the semiconductor industry. During the development, resist materials are usually evaluated by the information extracted from their scanning electron microscopy (SEM) images. The information extracted from SEM images is not always accurate owing to technical limitation. Accurate information extraction is also useful for the prediction of an etched substrate pattern. In this paper, we reported a strategy to classify the image pixels of line-and-space resist patterns into line, space, and edge classes, using unsupervised machine learning. Brightness and coordination information was integrated into the classification method. The high reliability in classification was demonstrated by hierarchical clustering based on its information integrating ability. Among all the methods of hierarchical clustering examined, the centroid method was the most accurate strategy for extracting information from a single SEM image.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/ac56b5</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Centroids ; Cluster analysis ; Clustering ; EB lithography ; EUV lithography ; Image classification ; Industrial development ; Information retrieval ; Machine learning ; resist image ; Scanning electron microscopy ; SEM images ; Substrates ; Unsupervised learning ; unsupervised machine learning</subject><ispartof>Japanese Journal of Applied Physics, 2022-05, Vol.61 (5), p.56505</ispartof><rights>2022 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-4c4dc6ee0f69ce3c1bb18be43c78ac3f56bc08f43506e906437c93bed55d94d73</citedby><cites>FETCH-LOGICAL-c410t-4c4dc6ee0f69ce3c1bb18be43c78ac3f56bc08f43506e906437c93bed55d94d73</cites><orcidid>0000-0002-1692-2830 ; 0000-0002-0124-5240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/ac56b5/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Jin, Yuqing</creatorcontrib><creatorcontrib>Kozawa, Takahiro</creatorcontrib><title>Classification of lines, spaces, and edges of resist patterns in scanning electron microscopy images using unsupervised machine learning</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>As key steps of lithography, the development of resist materials and the exploration of new materials are important to meet market demands from the semiconductor industry. During the development, resist materials are usually evaluated by the information extracted from their scanning electron microscopy (SEM) images. The information extracted from SEM images is not always accurate owing to technical limitation. Accurate information extraction is also useful for the prediction of an etched substrate pattern. In this paper, we reported a strategy to classify the image pixels of line-and-space resist patterns into line, space, and edge classes, using unsupervised machine learning. Brightness and coordination information was integrated into the classification method. The high reliability in classification was demonstrated by hierarchical clustering based on its information integrating ability. Among all the methods of hierarchical clustering examined, the centroid method was the most accurate strategy for extracting information from a single SEM image.</description><subject>Centroids</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>EB lithography</subject><subject>EUV lithography</subject><subject>Image classification</subject><subject>Industrial development</subject><subject>Information retrieval</subject><subject>Machine learning</subject><subject>resist image</subject><subject>Scanning electron microscopy</subject><subject>SEM images</subject><subject>Substrates</subject><subject>Unsupervised learning</subject><subject>unsupervised machine learning</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1u1TAQhS0EEpfCA7CzxIYFae34J8myumoBqRIbWFvOZFJ8leu4nqRS36CPjdOLyoauRvZ854zOYeyjFOfKtLq9kEo3lRbWXHgwtjev2O756zXbCVHLSnd1_Za9IzqUpzVa7tjjfvJEYQzglzBHPo98ChHpC6fkYZs-DhyHW6Rtl5ECLTz5ZcEciYfICXyMId5ynBCWXDyOAfJMMKcHHo5-U660AWukNWG-D4QDP3r4XQ7xCX3e5O_Zm9FPhB_-zjP26_rq5_5bdfPj6_f95U0FWoql0qAHsIhitB2gAtn3su1RK2haD2os0UG0o1ZGWOyE1aqBTvU4GDN0emjUGft08k15vluRFneY1xzLSVdbq0VTW2kLJU_UloQyji7lkiU_OCncU-Fua9dt7bpT4UXz-aQJc_pnejj45Kx0xgljjTAuDWNBq_-gL1v_AYRDktY</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Jin, Yuqing</creator><creator>Kozawa, Takahiro</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1692-2830</orcidid><orcidid>https://orcid.org/0000-0002-0124-5240</orcidid></search><sort><creationdate>20220501</creationdate><title>Classification of lines, spaces, and edges of resist patterns in scanning electron microscopy images using unsupervised machine learning</title><author>Jin, Yuqing ; Kozawa, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-4c4dc6ee0f69ce3c1bb18be43c78ac3f56bc08f43506e906437c93bed55d94d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Centroids</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>EB lithography</topic><topic>EUV lithography</topic><topic>Image classification</topic><topic>Industrial development</topic><topic>Information retrieval</topic><topic>Machine learning</topic><topic>resist image</topic><topic>Scanning electron microscopy</topic><topic>SEM images</topic><topic>Substrates</topic><topic>Unsupervised learning</topic><topic>unsupervised machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yuqing</creatorcontrib><creatorcontrib>Kozawa, Takahiro</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Yuqing</au><au>Kozawa, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of lines, spaces, and edges of resist patterns in scanning electron microscopy images using unsupervised machine learning</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>61</volume><issue>5</issue><spage>56505</spage><pages>56505-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>As key steps of lithography, the development of resist materials and the exploration of new materials are important to meet market demands from the semiconductor industry. During the development, resist materials are usually evaluated by the information extracted from their scanning electron microscopy (SEM) images. The information extracted from SEM images is not always accurate owing to technical limitation. Accurate information extraction is also useful for the prediction of an etched substrate pattern. In this paper, we reported a strategy to classify the image pixels of line-and-space resist patterns into line, space, and edge classes, using unsupervised machine learning. Brightness and coordination information was integrated into the classification method. The high reliability in classification was demonstrated by hierarchical clustering based on its information integrating ability. Among all the methods of hierarchical clustering examined, the centroid method was the most accurate strategy for extracting information from a single SEM image.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/ac56b5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1692-2830</orcidid><orcidid>https://orcid.org/0000-0002-0124-5240</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-4922 |
ispartof | Japanese Journal of Applied Physics, 2022-05, Vol.61 (5), p.56505 |
issn | 0021-4922 1347-4065 |
language | eng |
recordid | cdi_proquest_journals_2664072616 |
source | Institute of Physics Journals |
subjects | Centroids Cluster analysis Clustering EB lithography EUV lithography Image classification Industrial development Information retrieval Machine learning resist image Scanning electron microscopy SEM images Substrates Unsupervised learning unsupervised machine learning |
title | Classification of lines, spaces, and edges of resist patterns in scanning electron microscopy images using unsupervised machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20lines,%20spaces,%20and%20edges%20of%20resist%20patterns%20in%20scanning%20electron%20microscopy%20images%20using%20unsupervised%20machine%20learning&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Jin,%20Yuqing&rft.date=2022-05-01&rft.volume=61&rft.issue=5&rft.spage=56505&rft.pages=56505-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/ac56b5&rft_dat=%3Cproquest_iop_j%3E2664072616%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664072616&rft_id=info:pmid/&rfr_iscdi=true |