A Geometrical Representation of Entanglement as Internal Constraint

We study a system of two entangled spin 1/2, were the spin's are represented by a sphere model developed within the hidden measurement approach which is a generalization of the Bloch sphere representation, such that also the measurements are represented. We show how an arbitrary tensor product...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical physics 2005-07, Vol.44 (7), p.897-907
Hauptverfasser: Aerts, Diederik, D'Hondt, Ellie, D'Hooghe, Bart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 907
container_issue 7
container_start_page 897
container_title International journal of theoretical physics
container_volume 44
creator Aerts, Diederik
D'Hondt, Ellie
D'Hooghe, Bart
description We study a system of two entangled spin 1/2, were the spin's are represented by a sphere model developed within the hidden measurement approach which is a generalization of the Bloch sphere representation, such that also the measurements are represented. We show how an arbitrary tensor product state can be described in a complete way by a specific internal constraint between the ray or density states of the two spin 1/2. We derive a geometrical view of entanglement as a “rotation” and “stretching” of the sphere representing the states of the second particle as measurements are performed on the first particle. In the case of the singlet state entanglement can be represented by a real physical constraint, namely by means of a rigid rod.
doi_str_mv 10.1007/s10773-005-7067-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2664066933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664066933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-b89186737faa490417eceab40742c10e2af8a4b41f51289da417c9c65b6cea193</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKs_wNuC5-jkYzObY1lqWygIoueQjVnZ0iY1SQ_-e1PqaYbhYd6Xh5BHBs8MAF8yA0RBAVqKoJCqKzJjLXKqW2yvyQyAA0WU3S25y3kHABpkNyP9oln5ePAlTc7um3d_TD77UGyZYmji2CzrHr73_lCPjc3NJhSfQkX7GHJJdgrlntyMdp_9w_-ck8_X5Ue_ptu31aZfbKnjKAodOs06hQJHa2VNZ-idt4MElNwx8NyOnZWDZGPLeKe_bCWcdqodVOWYFnPydPl7TPHn5HMxu3g6d8mGKyVBKS1EpdiFcinmnPxojmk62PRrGJizK3NxZaorc3ZllPgDhnRb-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664066933</pqid></control><display><type>article</type><title>A Geometrical Representation of Entanglement as Internal Constraint</title><source>SpringerLink Journals - AutoHoldings</source><creator>Aerts, Diederik ; D'Hondt, Ellie ; D'Hooghe, Bart</creator><creatorcontrib>Aerts, Diederik ; D'Hondt, Ellie ; D'Hooghe, Bart</creatorcontrib><description>We study a system of two entangled spin 1/2, were the spin's are represented by a sphere model developed within the hidden measurement approach which is a generalization of the Bloch sphere representation, such that also the measurements are represented. We show how an arbitrary tensor product state can be described in a complete way by a specific internal constraint between the ray or density states of the two spin 1/2. We derive a geometrical view of entanglement as a “rotation” and “stretching” of the sphere representing the states of the second particle as measurements are performed on the first particle. In the case of the singlet state entanglement can be represented by a real physical constraint, namely by means of a rigid rod.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-005-7067-6</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Entanglement ; Representations ; Tensors</subject><ispartof>International journal of theoretical physics, 2005-07, Vol.44 (7), p.897-907</ispartof><rights>Springer Science + Business Media, Inc. 2005.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-b89186737faa490417eceab40742c10e2af8a4b41f51289da417c9c65b6cea193</citedby><cites>FETCH-LOGICAL-c273t-b89186737faa490417eceab40742c10e2af8a4b41f51289da417c9c65b6cea193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Aerts, Diederik</creatorcontrib><creatorcontrib>D'Hondt, Ellie</creatorcontrib><creatorcontrib>D'Hooghe, Bart</creatorcontrib><title>A Geometrical Representation of Entanglement as Internal Constraint</title><title>International journal of theoretical physics</title><description>We study a system of two entangled spin 1/2, were the spin's are represented by a sphere model developed within the hidden measurement approach which is a generalization of the Bloch sphere representation, such that also the measurements are represented. We show how an arbitrary tensor product state can be described in a complete way by a specific internal constraint between the ray or density states of the two spin 1/2. We derive a geometrical view of entanglement as a “rotation” and “stretching” of the sphere representing the states of the second particle as measurements are performed on the first particle. In the case of the singlet state entanglement can be represented by a real physical constraint, namely by means of a rigid rod.</description><subject>Entanglement</subject><subject>Representations</subject><subject>Tensors</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKs_wNuC5-jkYzObY1lqWygIoueQjVnZ0iY1SQ_-e1PqaYbhYd6Xh5BHBs8MAF8yA0RBAVqKoJCqKzJjLXKqW2yvyQyAA0WU3S25y3kHABpkNyP9oln5ePAlTc7um3d_TD77UGyZYmji2CzrHr73_lCPjc3NJhSfQkX7GHJJdgrlntyMdp_9w_-ck8_X5Ue_ptu31aZfbKnjKAodOs06hQJHa2VNZ-idt4MElNwx8NyOnZWDZGPLeKe_bCWcdqodVOWYFnPydPl7TPHn5HMxu3g6d8mGKyVBKS1EpdiFcinmnPxojmk62PRrGJizK3NxZaorc3ZllPgDhnRb-A</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Aerts, Diederik</creator><creator>D'Hondt, Ellie</creator><creator>D'Hooghe, Bart</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050701</creationdate><title>A Geometrical Representation of Entanglement as Internal Constraint</title><author>Aerts, Diederik ; D'Hondt, Ellie ; D'Hooghe, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-b89186737faa490417eceab40742c10e2af8a4b41f51289da417c9c65b6cea193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Entanglement</topic><topic>Representations</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aerts, Diederik</creatorcontrib><creatorcontrib>D'Hondt, Ellie</creatorcontrib><creatorcontrib>D'Hooghe, Bart</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aerts, Diederik</au><au>D'Hondt, Ellie</au><au>D'Hooghe, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Geometrical Representation of Entanglement as Internal Constraint</atitle><jtitle>International journal of theoretical physics</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>44</volume><issue>7</issue><spage>897</spage><epage>907</epage><pages>897-907</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>We study a system of two entangled spin 1/2, were the spin's are represented by a sphere model developed within the hidden measurement approach which is a generalization of the Bloch sphere representation, such that also the measurements are represented. We show how an arbitrary tensor product state can be described in a complete way by a specific internal constraint between the ray or density states of the two spin 1/2. We derive a geometrical view of entanglement as a “rotation” and “stretching” of the sphere representing the states of the second particle as measurements are performed on the first particle. In the case of the singlet state entanglement can be represented by a real physical constraint, namely by means of a rigid rod.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10773-005-7067-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7748
ispartof International journal of theoretical physics, 2005-07, Vol.44 (7), p.897-907
issn 0020-7748
1572-9575
language eng
recordid cdi_proquest_journals_2664066933
source SpringerLink Journals - AutoHoldings
subjects Entanglement
Representations
Tensors
title A Geometrical Representation of Entanglement as Internal Constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Geometrical%20Representation%20of%20Entanglement%20as%20Internal%20Constraint&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Aerts,%20Diederik&rft.date=2005-07-01&rft.volume=44&rft.issue=7&rft.spage=897&rft.epage=907&rft.pages=897-907&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-005-7067-6&rft_dat=%3Cproquest_cross%3E2664066933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664066933&rft_id=info:pmid/&rfr_iscdi=true