An Approximate Method for Recovering Input Signals of Measurement Transducers
We consider the problems of information-measuring equipment, modeled by ordinary differential equations, when some physical variable cannot be measured, but its value can be determined by the functional (or operator) of another physical variable available for measurement. Direct application of model...
Gespeichert in:
Veröffentlicht in: | Measurement techniques 2022-03, Vol.64 (12), p.943-948 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 948 |
---|---|
container_issue | 12 |
container_start_page | 943 |
container_title | Measurement techniques |
container_volume | 64 |
creator | Boykov, I. V. Krivulin, N. P. |
description | We consider the problems of information-measuring equipment, modeled by ordinary differential equations, when some physical variable cannot be measured, but its value can be determined by the functional (or operator) of another physical variable available for measurement. Direct application of models with ordinary differential equations for recovering input signals of measurement transducers has not received due development because of the need to calculate (possible high order) derivatives of noisy signals. A method for recovering input signals is proposed, in which the apparatus of hypersingular integrals is used for the approximate calculation of derivatives. We propose approximate methods for calculating derivatives expressed by quadrature formulas for hypersingular integrals. The input signal recovery method has been tested for one accelerometer model. We demonstrate the high effectiveness of the proposed method. |
doi_str_mv | 10.1007/s11018-022-02026-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2664061602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A703705144</galeid><sourcerecordid>A703705144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-b9ef470e557922d84b439c8c84f54975f925df8e41a8bf6992f829dac837dcf53</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuC1535bJLLMvwYbAg6r0OXnsyOralJK_rvzazgnYRD4PA-h5cHoWuCZwRjeRsJwUTlmNI0mBY5O0ETIiTLlcbFKZpgwVlOtKTn6CLGHcaYyUJP0Kpss7Lrgv9sDlUP2Qr6N19nzofsGaz_gNC022zRdkOfvTTbttrHzLsUq-IQ4ABtn61D1cZ6sBDiJTpzKQFXv_8Uvd7freeP-fLpYTEvl7llQvX5RoPjEoMQUlNaK77hTFtlFXeCaymcpqJ2Cjip1MYVWlOnqK4rq5isrRNsim7Gu6n4-wCxNzs_hGM5Q4uC44IUmKbUbExtqz2YpnW-D5VNr4ZDY30Lrkn7UiYVWBDOE0BHwAYfYwBnupC0hC9DsDl6NqNnkzybH8-GJYiNUOyOriD8dfmH-gbpoX95</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664061602</pqid></control><display><type>article</type><title>An Approximate Method for Recovering Input Signals of Measurement Transducers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Boykov, I. V. ; Krivulin, N. P.</creator><creatorcontrib>Boykov, I. V. ; Krivulin, N. P.</creatorcontrib><description>We consider the problems of information-measuring equipment, modeled by ordinary differential equations, when some physical variable cannot be measured, but its value can be determined by the functional (or operator) of another physical variable available for measurement. Direct application of models with ordinary differential equations for recovering input signals of measurement transducers has not received due development because of the need to calculate (possible high order) derivatives of noisy signals. A method for recovering input signals is proposed, in which the apparatus of hypersingular integrals is used for the approximate calculation of derivatives. We propose approximate methods for calculating derivatives expressed by quadrature formulas for hypersingular integrals. The input signal recovery method has been tested for one accelerometer model. We demonstrate the high effectiveness of the proposed method.</description><identifier>ISSN: 0543-1972</identifier><identifier>EISSN: 1573-8906</identifier><identifier>DOI: 10.1007/s11018-022-02026-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accelerometers ; Analysis ; Analytical Chemistry ; Approximation ; Characterization and Evaluation of Materials ; Derivatives ; Differential equations ; General Problems of Metrology and Measurement Technique ; Integrals ; Mathematical analysis ; Measurement ; Measurement Science and Instrumentation ; Methods ; Operators (mathematics) ; Ordinary differential equations ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quadratures ; Recovering ; Signal reconstruction ; Transducers</subject><ispartof>Measurement techniques, 2022-03, Vol.64 (12), p.943-948</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-b9ef470e557922d84b439c8c84f54975f925df8e41a8bf6992f829dac837dcf53</citedby><cites>FETCH-LOGICAL-c358t-b9ef470e557922d84b439c8c84f54975f925df8e41a8bf6992f829dac837dcf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11018-022-02026-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11018-022-02026-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Boykov, I. V.</creatorcontrib><creatorcontrib>Krivulin, N. P.</creatorcontrib><title>An Approximate Method for Recovering Input Signals of Measurement Transducers</title><title>Measurement techniques</title><addtitle>Meas Tech</addtitle><description>We consider the problems of information-measuring equipment, modeled by ordinary differential equations, when some physical variable cannot be measured, but its value can be determined by the functional (or operator) of another physical variable available for measurement. Direct application of models with ordinary differential equations for recovering input signals of measurement transducers has not received due development because of the need to calculate (possible high order) derivatives of noisy signals. A method for recovering input signals is proposed, in which the apparatus of hypersingular integrals is used for the approximate calculation of derivatives. We propose approximate methods for calculating derivatives expressed by quadrature formulas for hypersingular integrals. The input signal recovery method has been tested for one accelerometer model. We demonstrate the high effectiveness of the proposed method.</description><subject>Accelerometers</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Approximation</subject><subject>Characterization and Evaluation of Materials</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>General Problems of Metrology and Measurement Technique</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Measurement</subject><subject>Measurement Science and Instrumentation</subject><subject>Methods</subject><subject>Operators (mathematics)</subject><subject>Ordinary differential equations</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quadratures</subject><subject>Recovering</subject><subject>Signal reconstruction</subject><subject>Transducers</subject><issn>0543-1972</issn><issn>1573-8906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wKuC1535bJLLMvwYbAg6r0OXnsyOralJK_rvzazgnYRD4PA-h5cHoWuCZwRjeRsJwUTlmNI0mBY5O0ETIiTLlcbFKZpgwVlOtKTn6CLGHcaYyUJP0Kpss7Lrgv9sDlUP2Qr6N19nzofsGaz_gNC022zRdkOfvTTbttrHzLsUq-IQ4ABtn61D1cZ6sBDiJTpzKQFXv_8Uvd7freeP-fLpYTEvl7llQvX5RoPjEoMQUlNaK77hTFtlFXeCaymcpqJ2Cjip1MYVWlOnqK4rq5isrRNsim7Gu6n4-wCxNzs_hGM5Q4uC44IUmKbUbExtqz2YpnW-D5VNr4ZDY30Lrkn7UiYVWBDOE0BHwAYfYwBnupC0hC9DsDl6NqNnkzybH8-GJYiNUOyOriD8dfmH-gbpoX95</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Boykov, I. V.</creator><creator>Krivulin, N. P.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20220301</creationdate><title>An Approximate Method for Recovering Input Signals of Measurement Transducers</title><author>Boykov, I. V. ; Krivulin, N. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-b9ef470e557922d84b439c8c84f54975f925df8e41a8bf6992f829dac837dcf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerometers</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Approximation</topic><topic>Characterization and Evaluation of Materials</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>General Problems of Metrology and Measurement Technique</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Measurement</topic><topic>Measurement Science and Instrumentation</topic><topic>Methods</topic><topic>Operators (mathematics)</topic><topic>Ordinary differential equations</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quadratures</topic><topic>Recovering</topic><topic>Signal reconstruction</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boykov, I. V.</creatorcontrib><creatorcontrib>Krivulin, N. P.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Measurement techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boykov, I. V.</au><au>Krivulin, N. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Approximate Method for Recovering Input Signals of Measurement Transducers</atitle><jtitle>Measurement techniques</jtitle><stitle>Meas Tech</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>64</volume><issue>12</issue><spage>943</spage><epage>948</epage><pages>943-948</pages><issn>0543-1972</issn><eissn>1573-8906</eissn><abstract>We consider the problems of information-measuring equipment, modeled by ordinary differential equations, when some physical variable cannot be measured, but its value can be determined by the functional (or operator) of another physical variable available for measurement. Direct application of models with ordinary differential equations for recovering input signals of measurement transducers has not received due development because of the need to calculate (possible high order) derivatives of noisy signals. A method for recovering input signals is proposed, in which the apparatus of hypersingular integrals is used for the approximate calculation of derivatives. We propose approximate methods for calculating derivatives expressed by quadrature formulas for hypersingular integrals. The input signal recovery method has been tested for one accelerometer model. We demonstrate the high effectiveness of the proposed method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11018-022-02026-3</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0543-1972 |
ispartof | Measurement techniques, 2022-03, Vol.64 (12), p.943-948 |
issn | 0543-1972 1573-8906 |
language | eng |
recordid | cdi_proquest_journals_2664061602 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accelerometers Analysis Analytical Chemistry Approximation Characterization and Evaluation of Materials Derivatives Differential equations General Problems of Metrology and Measurement Technique Integrals Mathematical analysis Measurement Measurement Science and Instrumentation Methods Operators (mathematics) Ordinary differential equations Physical Chemistry Physics Physics and Astronomy Quadratures Recovering Signal reconstruction Transducers |
title | An Approximate Method for Recovering Input Signals of Measurement Transducers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Approximate%20Method%20for%20Recovering%20Input%20Signals%20of%20Measurement%20Transducers&rft.jtitle=Measurement%20techniques&rft.au=Boykov,%20I.%20V.&rft.date=2022-03-01&rft.volume=64&rft.issue=12&rft.spage=943&rft.epage=948&rft.pages=943-948&rft.issn=0543-1972&rft.eissn=1573-8906&rft_id=info:doi/10.1007/s11018-022-02026-3&rft_dat=%3Cgale_proqu%3EA703705144%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664061602&rft_id=info:pmid/&rft_galeid=A703705144&rfr_iscdi=true |