An Approximate Method for Recovering Input Signals of Measurement Transducers

We consider the problems of information-measuring equipment, modeled by ordinary differential equations, when some physical variable cannot be measured, but its value can be determined by the functional (or operator) of another physical variable available for measurement. Direct application of model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement techniques 2022-03, Vol.64 (12), p.943-948
Hauptverfasser: Boykov, I. V., Krivulin, N. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 948
container_issue 12
container_start_page 943
container_title Measurement techniques
container_volume 64
creator Boykov, I. V.
Krivulin, N. P.
description We consider the problems of information-measuring equipment, modeled by ordinary differential equations, when some physical variable cannot be measured, but its value can be determined by the functional (or operator) of another physical variable available for measurement. Direct application of models with ordinary differential equations for recovering input signals of measurement transducers has not received due development because of the need to calculate (possible high order) derivatives of noisy signals. A method for recovering input signals is proposed, in which the apparatus of hypersingular integrals is used for the approximate calculation of derivatives. We propose approximate methods for calculating derivatives expressed by quadrature formulas for hypersingular integrals. The input signal recovery method has been tested for one accelerometer model. We demonstrate the high effectiveness of the proposed method.
doi_str_mv 10.1007/s11018-022-02026-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2664061602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A703705144</galeid><sourcerecordid>A703705144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-b9ef470e557922d84b439c8c84f54975f925df8e41a8bf6992f829dac837dcf53</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuC1535bJLLMvwYbAg6r0OXnsyOralJK_rvzazgnYRD4PA-h5cHoWuCZwRjeRsJwUTlmNI0mBY5O0ETIiTLlcbFKZpgwVlOtKTn6CLGHcaYyUJP0Kpss7Lrgv9sDlUP2Qr6N19nzofsGaz_gNC022zRdkOfvTTbttrHzLsUq-IQ4ABtn61D1cZ6sBDiJTpzKQFXv_8Uvd7freeP-fLpYTEvl7llQvX5RoPjEoMQUlNaK77hTFtlFXeCaymcpqJ2Cjip1MYVWlOnqK4rq5isrRNsim7Gu6n4-wCxNzs_hGM5Q4uC44IUmKbUbExtqz2YpnW-D5VNr4ZDY30Lrkn7UiYVWBDOE0BHwAYfYwBnupC0hC9DsDl6NqNnkzybH8-GJYiNUOyOriD8dfmH-gbpoX95</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664061602</pqid></control><display><type>article</type><title>An Approximate Method for Recovering Input Signals of Measurement Transducers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Boykov, I. V. ; Krivulin, N. P.</creator><creatorcontrib>Boykov, I. V. ; Krivulin, N. P.</creatorcontrib><description>We consider the problems of information-measuring equipment, modeled by ordinary differential equations, when some physical variable cannot be measured, but its value can be determined by the functional (or operator) of another physical variable available for measurement. Direct application of models with ordinary differential equations for recovering input signals of measurement transducers has not received due development because of the need to calculate (possible high order) derivatives of noisy signals. A method for recovering input signals is proposed, in which the apparatus of hypersingular integrals is used for the approximate calculation of derivatives. We propose approximate methods for calculating derivatives expressed by quadrature formulas for hypersingular integrals. The input signal recovery method has been tested for one accelerometer model. We demonstrate the high effectiveness of the proposed method.</description><identifier>ISSN: 0543-1972</identifier><identifier>EISSN: 1573-8906</identifier><identifier>DOI: 10.1007/s11018-022-02026-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accelerometers ; Analysis ; Analytical Chemistry ; Approximation ; Characterization and Evaluation of Materials ; Derivatives ; Differential equations ; General Problems of Metrology and Measurement Technique ; Integrals ; Mathematical analysis ; Measurement ; Measurement Science and Instrumentation ; Methods ; Operators (mathematics) ; Ordinary differential equations ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quadratures ; Recovering ; Signal reconstruction ; Transducers</subject><ispartof>Measurement techniques, 2022-03, Vol.64 (12), p.943-948</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-b9ef470e557922d84b439c8c84f54975f925df8e41a8bf6992f829dac837dcf53</citedby><cites>FETCH-LOGICAL-c358t-b9ef470e557922d84b439c8c84f54975f925df8e41a8bf6992f829dac837dcf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11018-022-02026-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11018-022-02026-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Boykov, I. V.</creatorcontrib><creatorcontrib>Krivulin, N. P.</creatorcontrib><title>An Approximate Method for Recovering Input Signals of Measurement Transducers</title><title>Measurement techniques</title><addtitle>Meas Tech</addtitle><description>We consider the problems of information-measuring equipment, modeled by ordinary differential equations, when some physical variable cannot be measured, but its value can be determined by the functional (or operator) of another physical variable available for measurement. Direct application of models with ordinary differential equations for recovering input signals of measurement transducers has not received due development because of the need to calculate (possible high order) derivatives of noisy signals. A method for recovering input signals is proposed, in which the apparatus of hypersingular integrals is used for the approximate calculation of derivatives. We propose approximate methods for calculating derivatives expressed by quadrature formulas for hypersingular integrals. The input signal recovery method has been tested for one accelerometer model. We demonstrate the high effectiveness of the proposed method.</description><subject>Accelerometers</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Approximation</subject><subject>Characterization and Evaluation of Materials</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>General Problems of Metrology and Measurement Technique</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Measurement</subject><subject>Measurement Science and Instrumentation</subject><subject>Methods</subject><subject>Operators (mathematics)</subject><subject>Ordinary differential equations</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quadratures</subject><subject>Recovering</subject><subject>Signal reconstruction</subject><subject>Transducers</subject><issn>0543-1972</issn><issn>1573-8906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wKuC1535bJLLMvwYbAg6r0OXnsyOralJK_rvzazgnYRD4PA-h5cHoWuCZwRjeRsJwUTlmNI0mBY5O0ETIiTLlcbFKZpgwVlOtKTn6CLGHcaYyUJP0Kpss7Lrgv9sDlUP2Qr6N19nzofsGaz_gNC022zRdkOfvTTbttrHzLsUq-IQ4ABtn61D1cZ6sBDiJTpzKQFXv_8Uvd7freeP-fLpYTEvl7llQvX5RoPjEoMQUlNaK77hTFtlFXeCaymcpqJ2Cjip1MYVWlOnqK4rq5isrRNsim7Gu6n4-wCxNzs_hGM5Q4uC44IUmKbUbExtqz2YpnW-D5VNr4ZDY30Lrkn7UiYVWBDOE0BHwAYfYwBnupC0hC9DsDl6NqNnkzybH8-GJYiNUOyOriD8dfmH-gbpoX95</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Boykov, I. V.</creator><creator>Krivulin, N. P.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20220301</creationdate><title>An Approximate Method for Recovering Input Signals of Measurement Transducers</title><author>Boykov, I. V. ; Krivulin, N. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-b9ef470e557922d84b439c8c84f54975f925df8e41a8bf6992f829dac837dcf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerometers</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Approximation</topic><topic>Characterization and Evaluation of Materials</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>General Problems of Metrology and Measurement Technique</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Measurement</topic><topic>Measurement Science and Instrumentation</topic><topic>Methods</topic><topic>Operators (mathematics)</topic><topic>Ordinary differential equations</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quadratures</topic><topic>Recovering</topic><topic>Signal reconstruction</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boykov, I. V.</creatorcontrib><creatorcontrib>Krivulin, N. P.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Measurement techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boykov, I. V.</au><au>Krivulin, N. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Approximate Method for Recovering Input Signals of Measurement Transducers</atitle><jtitle>Measurement techniques</jtitle><stitle>Meas Tech</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>64</volume><issue>12</issue><spage>943</spage><epage>948</epage><pages>943-948</pages><issn>0543-1972</issn><eissn>1573-8906</eissn><abstract>We consider the problems of information-measuring equipment, modeled by ordinary differential equations, when some physical variable cannot be measured, but its value can be determined by the functional (or operator) of another physical variable available for measurement. Direct application of models with ordinary differential equations for recovering input signals of measurement transducers has not received due development because of the need to calculate (possible high order) derivatives of noisy signals. A method for recovering input signals is proposed, in which the apparatus of hypersingular integrals is used for the approximate calculation of derivatives. We propose approximate methods for calculating derivatives expressed by quadrature formulas for hypersingular integrals. The input signal recovery method has been tested for one accelerometer model. We demonstrate the high effectiveness of the proposed method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11018-022-02026-3</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0543-1972
ispartof Measurement techniques, 2022-03, Vol.64 (12), p.943-948
issn 0543-1972
1573-8906
language eng
recordid cdi_proquest_journals_2664061602
source SpringerLink Journals - AutoHoldings
subjects Accelerometers
Analysis
Analytical Chemistry
Approximation
Characterization and Evaluation of Materials
Derivatives
Differential equations
General Problems of Metrology and Measurement Technique
Integrals
Mathematical analysis
Measurement
Measurement Science and Instrumentation
Methods
Operators (mathematics)
Ordinary differential equations
Physical Chemistry
Physics
Physics and Astronomy
Quadratures
Recovering
Signal reconstruction
Transducers
title An Approximate Method for Recovering Input Signals of Measurement Transducers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Approximate%20Method%20for%20Recovering%20Input%20Signals%20of%20Measurement%20Transducers&rft.jtitle=Measurement%20techniques&rft.au=Boykov,%20I.%20V.&rft.date=2022-03-01&rft.volume=64&rft.issue=12&rft.spage=943&rft.epage=948&rft.pages=943-948&rft.issn=0543-1972&rft.eissn=1573-8906&rft_id=info:doi/10.1007/s11018-022-02026-3&rft_dat=%3Cgale_proqu%3EA703705144%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664061602&rft_id=info:pmid/&rft_galeid=A703705144&rfr_iscdi=true