Affine frames, quasi-affine frames, and their duals
The notion of quasi-affine frame was recently introduced by Ron and Shen [9] in order to achieve shift-invariance of the discrete wavelet transform. In this paper, we establish a duality-preservation theorem for quasi-affine frames. Furthermore, the preservation of frame bounds when changing an affi...
Gespeichert in:
Veröffentlicht in: | Advances in computational mathematics 1998-01, Vol.8 (1-2), p.1-17 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1-2 |
container_start_page | 1 |
container_title | Advances in computational mathematics |
container_volume | 8 |
creator | Chui, Charles K Shi Xianliang Stöckler Joachim |
description | The notion of quasi-affine frame was recently introduced by Ron and Shen [9] in order to achieve shift-invariance of the discrete wavelet transform. In this paper, we establish a duality-preservation theorem for quasi-affine frames. Furthermore, the preservation of frame bounds when changing an affine frame to a quasi-affine frame is shown to hold without the decay assumptions in [9]. Our consideration leads naturally to the study of certain sesquilinear operators which are defined by two affine systems. The translation-invariance of such operators is characterized in terms of certain intrinsic properties of the two affine systems. |
doi_str_mv | 10.1023/A:1018975725857 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2664061453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664061453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-d6c0013bfb042b0f2b4834d7f3c4f1be5244d6b4516c14e3950d675b120953903</originalsourceid><addsrcrecordid>eNpVjjFPwzAQhS0EEqUws0ZixfTOd7ZjtqiigFSpC8yVHdsiFaQ0Tv4_kWBh-j694b0nxC3CA4KiVfOIgLWz2ipda3smFjirdMB8PjugkxZNfSmuSjkAgDNWLwQ1OXd9qvLgv1K5r06TL530_0Pfx2r8SN1Qxcl_lmtxkWekmz8uxfvm6W39Ire759d1s5WtUnaU0bQASCEHYBUgq8A1cbSZWs4YklbM0QTWaFrkRE5DnD8FVOA0OaCluPvt_R6OpymVcX84TkM_T-6VMQwGWRP9ALVVRH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664061453</pqid></control><display><type>article</type><title>Affine frames, quasi-affine frames, and their duals</title><source>Springer Nature - Complete Springer Journals</source><creator>Chui, Charles K ; Shi Xianliang ; Stöckler Joachim</creator><creatorcontrib>Chui, Charles K ; Shi Xianliang ; Stöckler Joachim</creatorcontrib><description>The notion of quasi-affine frame was recently introduced by Ron and Shen [9] in order to achieve shift-invariance of the discrete wavelet transform. In this paper, we establish a duality-preservation theorem for quasi-affine frames. Furthermore, the preservation of frame bounds when changing an affine frame to a quasi-affine frame is shown to hold without the decay assumptions in [9]. Our consideration leads naturally to the study of certain sesquilinear operators which are defined by two affine systems. The translation-invariance of such operators is characterized in terms of certain intrinsic properties of the two affine systems.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1023/A:1018975725857</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Computational mathematics ; Discrete Wavelet Transform ; Frames ; Invariance ; Operators ; Wavelet transforms</subject><ispartof>Advances in computational mathematics, 1998-01, Vol.8 (1-2), p.1-17</ispartof><rights>Kluwer Academic Publishers 1998.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-d6c0013bfb042b0f2b4834d7f3c4f1be5244d6b4516c14e3950d675b120953903</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Chui, Charles K</creatorcontrib><creatorcontrib>Shi Xianliang</creatorcontrib><creatorcontrib>Stöckler Joachim</creatorcontrib><title>Affine frames, quasi-affine frames, and their duals</title><title>Advances in computational mathematics</title><description>The notion of quasi-affine frame was recently introduced by Ron and Shen [9] in order to achieve shift-invariance of the discrete wavelet transform. In this paper, we establish a duality-preservation theorem for quasi-affine frames. Furthermore, the preservation of frame bounds when changing an affine frame to a quasi-affine frame is shown to hold without the decay assumptions in [9]. Our consideration leads naturally to the study of certain sesquilinear operators which are defined by two affine systems. The translation-invariance of such operators is characterized in terms of certain intrinsic properties of the two affine systems.</description><subject>Computational mathematics</subject><subject>Discrete Wavelet Transform</subject><subject>Frames</subject><subject>Invariance</subject><subject>Operators</subject><subject>Wavelet transforms</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVjjFPwzAQhS0EEqUws0ZixfTOd7ZjtqiigFSpC8yVHdsiFaQ0Tv4_kWBh-j694b0nxC3CA4KiVfOIgLWz2ipda3smFjirdMB8PjugkxZNfSmuSjkAgDNWLwQ1OXd9qvLgv1K5r06TL530_0Pfx2r8SN1Qxcl_lmtxkWekmz8uxfvm6W39Ire759d1s5WtUnaU0bQASCEHYBUgq8A1cbSZWs4YklbM0QTWaFrkRE5DnD8FVOA0OaCluPvt_R6OpymVcX84TkM_T-6VMQwGWRP9ALVVRH8</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Chui, Charles K</creator><creator>Shi Xianliang</creator><creator>Stöckler Joachim</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>19980101</creationdate><title>Affine frames, quasi-affine frames, and their duals</title><author>Chui, Charles K ; Shi Xianliang ; Stöckler Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-d6c0013bfb042b0f2b4834d7f3c4f1be5244d6b4516c14e3950d675b120953903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Computational mathematics</topic><topic>Discrete Wavelet Transform</topic><topic>Frames</topic><topic>Invariance</topic><topic>Operators</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chui, Charles K</creatorcontrib><creatorcontrib>Shi Xianliang</creatorcontrib><creatorcontrib>Stöckler Joachim</creatorcontrib><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chui, Charles K</au><au>Shi Xianliang</au><au>Stöckler Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Affine frames, quasi-affine frames, and their duals</atitle><jtitle>Advances in computational mathematics</jtitle><date>1998-01-01</date><risdate>1998</risdate><volume>8</volume><issue>1-2</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>The notion of quasi-affine frame was recently introduced by Ron and Shen [9] in order to achieve shift-invariance of the discrete wavelet transform. In this paper, we establish a duality-preservation theorem for quasi-affine frames. Furthermore, the preservation of frame bounds when changing an affine frame to a quasi-affine frame is shown to hold without the decay assumptions in [9]. Our consideration leads naturally to the study of certain sesquilinear operators which are defined by two affine systems. The translation-invariance of such operators is characterized in terms of certain intrinsic properties of the two affine systems.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1018975725857</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1019-7168 |
ispartof | Advances in computational mathematics, 1998-01, Vol.8 (1-2), p.1-17 |
issn | 1019-7168 1572-9044 |
language | eng |
recordid | cdi_proquest_journals_2664061453 |
source | Springer Nature - Complete Springer Journals |
subjects | Computational mathematics Discrete Wavelet Transform Frames Invariance Operators Wavelet transforms |
title | Affine frames, quasi-affine frames, and their duals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Affine%20frames,%20quasi-affine%20frames,%20and%20their%20duals&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Chui,%20Charles%20K&rft.date=1998-01-01&rft.volume=8&rft.issue=1-2&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1023/A:1018975725857&rft_dat=%3Cproquest%3E2664061453%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664061453&rft_id=info:pmid/&rfr_iscdi=true |