Notes on very ample vector bundles on 3-folds
Let be a very ample vector bundle of rank two on a smooth complex projective threefold X. An inequality about the third Segre class of is provided when is nef but not big, and when a suitable positive multiple of defines a morphism X → B with connected fibers onto a smooth projective curve B, where...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2005-12, Vol.85 (6), p.527-537 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 537 |
---|---|
container_issue | 6 |
container_start_page | 527 |
container_title | Archiv der Mathematik |
container_volume | 85 |
creator | Maeda, Hidetoshi Sommese, Andrew J. |
description | Let be a very ample vector bundle of rank two on a smooth complex projective threefold X. An inequality about the third Segre class of is provided when is nef but not big, and when a suitable positive multiple of defines a morphism X → B with connected fibers onto a smooth projective curve B, where KX is the canonical bundle of X. As an application, the case where the genus of B is positive and has a global section whose zero locus is a smooth hyperelliptic curve of genus ≧ 2 is investigated, and our previous result is improved for threefolds. |
doi_str_mv | 10.1007/s00013-005-1445-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2664061441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664061441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-b63cba6485aed1aa3733bc8ec9248751d21dfada844342c621997b1bb82359e33</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMoWFd_gLeC52gmk7bJURZ1hUUvCt5Cvgou3aYmXWH_vVnqaQbeh3eYh5BbYPfAWPeQGWOAlLGGghANFWekAsEZlQrlOalKjFRK9XVJrnLeFZjLTlWEvsU55DqO9W9Ix9rspyGU1c0x1fYw-mEJkfZx8PmaXPRmyOHmf67I5_PTx3pDt-8vr-vHLXW8w5naFp01rZCNCR6MwQ7ROhmc4kJ2DXgOvjfeSCFQcNdyUKqzYK3k2KiAuCJ3S--U4s8h5Fnv4iGN5aTmbStYW36EQsFCuRRzTqHXU_rem3TUwPTJil6s6GJFn6xogX8FW1Lz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664061441</pqid></control><display><type>article</type><title>Notes on very ample vector bundles on 3-folds</title><source>SpringerLink Journals - AutoHoldings</source><creator>Maeda, Hidetoshi ; Sommese, Andrew J.</creator><creatorcontrib>Maeda, Hidetoshi ; Sommese, Andrew J.</creatorcontrib><description>Let be a very ample vector bundle of rank two on a smooth complex projective threefold X. An inequality about the third Segre class of is provided when is nef but not big, and when a suitable positive multiple of defines a morphism X → B with connected fibers onto a smooth projective curve B, where KX is the canonical bundle of X. As an application, the case where the genus of B is positive and has a global section whose zero locus is a smooth hyperelliptic curve of genus ≧ 2 is investigated, and our previous result is improved for threefolds.</description><identifier>ISSN: 0003-889X</identifier><identifier>EISSN: 1420-8938</identifier><identifier>DOI: 10.1007/s00013-005-1445-4</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><ispartof>Archiv der Mathematik, 2005-12, Vol.85 (6), p.527-537</ispartof><rights>Birkhäuser Verlag, Basel 2005.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-b63cba6485aed1aa3733bc8ec9248751d21dfada844342c621997b1bb82359e33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Maeda, Hidetoshi</creatorcontrib><creatorcontrib>Sommese, Andrew J.</creatorcontrib><title>Notes on very ample vector bundles on 3-folds</title><title>Archiv der Mathematik</title><description>Let be a very ample vector bundle of rank two on a smooth complex projective threefold X. An inequality about the third Segre class of is provided when is nef but not big, and when a suitable positive multiple of defines a morphism X → B with connected fibers onto a smooth projective curve B, where KX is the canonical bundle of X. As an application, the case where the genus of B is positive and has a global section whose zero locus is a smooth hyperelliptic curve of genus ≧ 2 is investigated, and our previous result is improved for threefolds.</description><issn>0003-889X</issn><issn>1420-8938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhoMoWFd_gLeC52gmk7bJURZ1hUUvCt5Cvgou3aYmXWH_vVnqaQbeh3eYh5BbYPfAWPeQGWOAlLGGghANFWekAsEZlQrlOalKjFRK9XVJrnLeFZjLTlWEvsU55DqO9W9Ix9rspyGU1c0x1fYw-mEJkfZx8PmaXPRmyOHmf67I5_PTx3pDt-8vr-vHLXW8w5naFp01rZCNCR6MwQ7ROhmc4kJ2DXgOvjfeSCFQcNdyUKqzYK3k2KiAuCJ3S--U4s8h5Fnv4iGN5aTmbStYW36EQsFCuRRzTqHXU_rem3TUwPTJil6s6GJFn6xogX8FW1Lz</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Maeda, Hidetoshi</creator><creator>Sommese, Andrew J.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051201</creationdate><title>Notes on very ample vector bundles on 3-folds</title><author>Maeda, Hidetoshi ; Sommese, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-b63cba6485aed1aa3733bc8ec9248751d21dfada844342c621997b1bb82359e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maeda, Hidetoshi</creatorcontrib><creatorcontrib>Sommese, Andrew J.</creatorcontrib><collection>CrossRef</collection><jtitle>Archiv der Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maeda, Hidetoshi</au><au>Sommese, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Notes on very ample vector bundles on 3-folds</atitle><jtitle>Archiv der Mathematik</jtitle><date>2005-12-01</date><risdate>2005</risdate><volume>85</volume><issue>6</issue><spage>527</spage><epage>537</epage><pages>527-537</pages><issn>0003-889X</issn><eissn>1420-8938</eissn><abstract>Let be a very ample vector bundle of rank two on a smooth complex projective threefold X. An inequality about the third Segre class of is provided when is nef but not big, and when a suitable positive multiple of defines a morphism X → B with connected fibers onto a smooth projective curve B, where KX is the canonical bundle of X. As an application, the case where the genus of B is positive and has a global section whose zero locus is a smooth hyperelliptic curve of genus ≧ 2 is investigated, and our previous result is improved for threefolds.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00013-005-1445-4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-889X |
ispartof | Archiv der Mathematik, 2005-12, Vol.85 (6), p.527-537 |
issn | 0003-889X 1420-8938 |
language | eng |
recordid | cdi_proquest_journals_2664061441 |
source | SpringerLink Journals - AutoHoldings |
title | Notes on very ample vector bundles on 3-folds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Notes%20on%20very%20ample%20vector%20bundles%20on%203-folds&rft.jtitle=Archiv%20der%20Mathematik&rft.au=Maeda,%20Hidetoshi&rft.date=2005-12-01&rft.volume=85&rft.issue=6&rft.spage=527&rft.epage=537&rft.pages=527-537&rft.issn=0003-889X&rft.eissn=1420-8938&rft_id=info:doi/10.1007/s00013-005-1445-4&rft_dat=%3Cproquest_cross%3E2664061441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664061441&rft_id=info:pmid/&rfr_iscdi=true |