Long-term tracking and quantification of individual behavior in bumble bee colonies

Social insects are ecologically dominant and provide vital ecosystem services. It is critical to understand collective responses of social insects such as bees to ecological perturbations. However, studying behavior of individual insects across entire colonies and across timescales relevant for colo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial life and robotics 2022-05, Vol.27 (2), p.401-406
Hauptverfasser: Smith, Matthew A.-Y., Easton-Calabria, August, Zhang, Tony, Zmyslony, Szymon, Thuma, Jessie, Cronin, Kayleigh, Pasadyn, Cassandra L., de Bivort, Benjamin L., Crall, James D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue 2
container_start_page 401
container_title Artificial life and robotics
container_volume 27
creator Smith, Matthew A.-Y.
Easton-Calabria, August
Zhang, Tony
Zmyslony, Szymon
Thuma, Jessie
Cronin, Kayleigh
Pasadyn, Cassandra L.
de Bivort, Benjamin L.
Crall, James D.
description Social insects are ecologically dominant and provide vital ecosystem services. It is critical to understand collective responses of social insects such as bees to ecological perturbations. However, studying behavior of individual insects across entire colonies and across timescales relevant for colony performance (i.e., days or weeks) remains a central challenge. Here, we describe an approach for long-term monitoring of individuals within multiple bumble bee ( Bombus spp.) colonies that combines the complementary strengths of multiple existing methods. Specifically, we combine (a) automated monitoring, (b) fiducial tag tracking, and (c) pose estimation to quantify behavior across multiple colonies over a 48 h period. Finally, we demonstrate the benefits of this approach by quantifying an important but subtle behavior (antennal activity) in bumble bee colonies, and how this behavior is impacted by a common environmental stressor (a neonicotinoid pesticide).
doi_str_mv 10.1007/s10015-022-00762-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2664061220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664061220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-15f917875ef5c043182dd79bbe1cbc63e300bdbc4f4f867df8362b3bfe8e5d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRsFb_gKuA62hek5lZSvEFBRd1H_KsqdOkTWZK_fdGR3Dn5r4451z4quoao1uMUHOXS8U1RITAsnICjyfVDHPMYMNqflpmRimsSdeeVxc5bxBiDeJ0Vq2WMazhYNMWDEnqDx_WQAYD9qMMg3dey8HHAKIDPhh_8GaUPVD2XR58TOUG1LhVvS0nC3TsY_A2X1ZnTvbZXv32ebV6fHhbPMPl69PL4n4JNenoAHHtOty0TW1drRGjuCXGNJ1SFmulObUUIWWUZo65ljfGtZQTRZWzra0NnVc3U-ouxf1o8yA2cUyhPBSEc4Y4JgQVFZlUOsWck3Vil_xWpk-BkfhGJyZ0oqATP-jEsZjoZMpFHNY2_UX_4_oCwrJy_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664061220</pqid></control><display><type>article</type><title>Long-term tracking and quantification of individual behavior in bumble bee colonies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Smith, Matthew A.-Y. ; Easton-Calabria, August ; Zhang, Tony ; Zmyslony, Szymon ; Thuma, Jessie ; Cronin, Kayleigh ; Pasadyn, Cassandra L. ; de Bivort, Benjamin L. ; Crall, James D.</creator><creatorcontrib>Smith, Matthew A.-Y. ; Easton-Calabria, August ; Zhang, Tony ; Zmyslony, Szymon ; Thuma, Jessie ; Cronin, Kayleigh ; Pasadyn, Cassandra L. ; de Bivort, Benjamin L. ; Crall, James D.</creatorcontrib><description>Social insects are ecologically dominant and provide vital ecosystem services. It is critical to understand collective responses of social insects such as bees to ecological perturbations. However, studying behavior of individual insects across entire colonies and across timescales relevant for colony performance (i.e., days or weeks) remains a central challenge. Here, we describe an approach for long-term monitoring of individuals within multiple bumble bee ( Bombus spp.) colonies that combines the complementary strengths of multiple existing methods. Specifically, we combine (a) automated monitoring, (b) fiducial tag tracking, and (c) pose estimation to quantify behavior across multiple colonies over a 48 h period. Finally, we demonstrate the benefits of this approach by quantifying an important but subtle behavior (antennal activity) in bumble bee colonies, and how this behavior is impacted by a common environmental stressor (a neonicotinoid pesticide).</description><identifier>ISSN: 1433-5298</identifier><identifier>EISSN: 1614-7456</identifier><identifier>DOI: 10.1007/s10015-022-00762-x</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Artificial Intelligence ; Bees ; Colonies ; Computation by Abstract Devices ; Computer Science ; Control ; Insect ecology ; Insects ; Mechatronics ; Monitoring ; Original Article ; Perturbation ; Pesticides ; Pose estimation ; Robotics ; Tracking</subject><ispartof>Artificial life and robotics, 2022-05, Vol.27 (2), p.401-406</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-15f917875ef5c043182dd79bbe1cbc63e300bdbc4f4f867df8362b3bfe8e5d3</citedby><cites>FETCH-LOGICAL-c293t-15f917875ef5c043182dd79bbe1cbc63e300bdbc4f4f867df8362b3bfe8e5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10015-022-00762-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10015-022-00762-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Smith, Matthew A.-Y.</creatorcontrib><creatorcontrib>Easton-Calabria, August</creatorcontrib><creatorcontrib>Zhang, Tony</creatorcontrib><creatorcontrib>Zmyslony, Szymon</creatorcontrib><creatorcontrib>Thuma, Jessie</creatorcontrib><creatorcontrib>Cronin, Kayleigh</creatorcontrib><creatorcontrib>Pasadyn, Cassandra L.</creatorcontrib><creatorcontrib>de Bivort, Benjamin L.</creatorcontrib><creatorcontrib>Crall, James D.</creatorcontrib><title>Long-term tracking and quantification of individual behavior in bumble bee colonies</title><title>Artificial life and robotics</title><addtitle>Artif Life Robotics</addtitle><description>Social insects are ecologically dominant and provide vital ecosystem services. It is critical to understand collective responses of social insects such as bees to ecological perturbations. However, studying behavior of individual insects across entire colonies and across timescales relevant for colony performance (i.e., days or weeks) remains a central challenge. Here, we describe an approach for long-term monitoring of individuals within multiple bumble bee ( Bombus spp.) colonies that combines the complementary strengths of multiple existing methods. Specifically, we combine (a) automated monitoring, (b) fiducial tag tracking, and (c) pose estimation to quantify behavior across multiple colonies over a 48 h period. Finally, we demonstrate the benefits of this approach by quantifying an important but subtle behavior (antennal activity) in bumble bee colonies, and how this behavior is impacted by a common environmental stressor (a neonicotinoid pesticide).</description><subject>Artificial Intelligence</subject><subject>Bees</subject><subject>Colonies</subject><subject>Computation by Abstract Devices</subject><subject>Computer Science</subject><subject>Control</subject><subject>Insect ecology</subject><subject>Insects</subject><subject>Mechatronics</subject><subject>Monitoring</subject><subject>Original Article</subject><subject>Perturbation</subject><subject>Pesticides</subject><subject>Pose estimation</subject><subject>Robotics</subject><subject>Tracking</subject><issn>1433-5298</issn><issn>1614-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhQdRsFb_gKuA62hek5lZSvEFBRd1H_KsqdOkTWZK_fdGR3Dn5r4451z4quoao1uMUHOXS8U1RITAsnICjyfVDHPMYMNqflpmRimsSdeeVxc5bxBiDeJ0Vq2WMazhYNMWDEnqDx_WQAYD9qMMg3dey8HHAKIDPhh_8GaUPVD2XR58TOUG1LhVvS0nC3TsY_A2X1ZnTvbZXv32ebV6fHhbPMPl69PL4n4JNenoAHHtOty0TW1drRGjuCXGNJ1SFmulObUUIWWUZo65ljfGtZQTRZWzra0NnVc3U-ouxf1o8yA2cUyhPBSEc4Y4JgQVFZlUOsWck3Vil_xWpk-BkfhGJyZ0oqATP-jEsZjoZMpFHNY2_UX_4_oCwrJy_Q</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Smith, Matthew A.-Y.</creator><creator>Easton-Calabria, August</creator><creator>Zhang, Tony</creator><creator>Zmyslony, Szymon</creator><creator>Thuma, Jessie</creator><creator>Cronin, Kayleigh</creator><creator>Pasadyn, Cassandra L.</creator><creator>de Bivort, Benjamin L.</creator><creator>Crall, James D.</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220501</creationdate><title>Long-term tracking and quantification of individual behavior in bumble bee colonies</title><author>Smith, Matthew A.-Y. ; Easton-Calabria, August ; Zhang, Tony ; Zmyslony, Szymon ; Thuma, Jessie ; Cronin, Kayleigh ; Pasadyn, Cassandra L. ; de Bivort, Benjamin L. ; Crall, James D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-15f917875ef5c043182dd79bbe1cbc63e300bdbc4f4f867df8362b3bfe8e5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Bees</topic><topic>Colonies</topic><topic>Computation by Abstract Devices</topic><topic>Computer Science</topic><topic>Control</topic><topic>Insect ecology</topic><topic>Insects</topic><topic>Mechatronics</topic><topic>Monitoring</topic><topic>Original Article</topic><topic>Perturbation</topic><topic>Pesticides</topic><topic>Pose estimation</topic><topic>Robotics</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Matthew A.-Y.</creatorcontrib><creatorcontrib>Easton-Calabria, August</creatorcontrib><creatorcontrib>Zhang, Tony</creatorcontrib><creatorcontrib>Zmyslony, Szymon</creatorcontrib><creatorcontrib>Thuma, Jessie</creatorcontrib><creatorcontrib>Cronin, Kayleigh</creatorcontrib><creatorcontrib>Pasadyn, Cassandra L.</creatorcontrib><creatorcontrib>de Bivort, Benjamin L.</creatorcontrib><creatorcontrib>Crall, James D.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Artificial life and robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Matthew A.-Y.</au><au>Easton-Calabria, August</au><au>Zhang, Tony</au><au>Zmyslony, Szymon</au><au>Thuma, Jessie</au><au>Cronin, Kayleigh</au><au>Pasadyn, Cassandra L.</au><au>de Bivort, Benjamin L.</au><au>Crall, James D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term tracking and quantification of individual behavior in bumble bee colonies</atitle><jtitle>Artificial life and robotics</jtitle><stitle>Artif Life Robotics</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>27</volume><issue>2</issue><spage>401</spage><epage>406</epage><pages>401-406</pages><issn>1433-5298</issn><eissn>1614-7456</eissn><abstract>Social insects are ecologically dominant and provide vital ecosystem services. It is critical to understand collective responses of social insects such as bees to ecological perturbations. However, studying behavior of individual insects across entire colonies and across timescales relevant for colony performance (i.e., days or weeks) remains a central challenge. Here, we describe an approach for long-term monitoring of individuals within multiple bumble bee ( Bombus spp.) colonies that combines the complementary strengths of multiple existing methods. Specifically, we combine (a) automated monitoring, (b) fiducial tag tracking, and (c) pose estimation to quantify behavior across multiple colonies over a 48 h period. Finally, we demonstrate the benefits of this approach by quantifying an important but subtle behavior (antennal activity) in bumble bee colonies, and how this behavior is impacted by a common environmental stressor (a neonicotinoid pesticide).</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10015-022-00762-x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-5298
ispartof Artificial life and robotics, 2022-05, Vol.27 (2), p.401-406
issn 1433-5298
1614-7456
language eng
recordid cdi_proquest_journals_2664061220
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Bees
Colonies
Computation by Abstract Devices
Computer Science
Control
Insect ecology
Insects
Mechatronics
Monitoring
Original Article
Perturbation
Pesticides
Pose estimation
Robotics
Tracking
title Long-term tracking and quantification of individual behavior in bumble bee colonies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20tracking%20and%20quantification%20of%20individual%20behavior%20in%20bumble%20bee%20colonies&rft.jtitle=Artificial%20life%20and%20robotics&rft.au=Smith,%20Matthew%20A.-Y.&rft.date=2022-05-01&rft.volume=27&rft.issue=2&rft.spage=401&rft.epage=406&rft.pages=401-406&rft.issn=1433-5298&rft.eissn=1614-7456&rft_id=info:doi/10.1007/s10015-022-00762-x&rft_dat=%3Cproquest_cross%3E2664061220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664061220&rft_id=info:pmid/&rfr_iscdi=true