Relationships between structure, memory and flow in sheared disordered materials
A fundamental challenge regarding disordered solids is predicting macroscopic yield—the point at which elastic behaviour changes to plastic behaviour—from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset...
Gespeichert in:
Veröffentlicht in: | Nature physics 2022-05, Vol.18 (5), p.565-570 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 570 |
---|---|
container_issue | 5 |
container_start_page | 565 |
container_title | Nature physics |
container_volume | 18 |
creator | Galloway, K. L. Teich, E. G. Ma, X. G. Kammer, Ch Graham, I. R. Keim, N. C. Reina, C. Jerolmack, D. J. Yodh, A. G. Arratia, P. E. |
description | A fundamental challenge regarding disordered solids is predicting macroscopic yield—the point at which elastic behaviour changes to plastic behaviour—from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset of plastic rearrangements. This suggests that one path to understanding bulk rheology is to map particle configurations to their mode of deformation. Here, we subject two-dimensional dense colloidal systems to oscillatory shear, measure the particle trajectories and bulk rheology, and quantify particle microstructure using excess entropy. Our results reveal a direct relation between excess entropy and energy dissipation that is insensitive to the nature of interactions amongst particles. We use this relation to build a physically informed model that connects rheology to microstructure. Our findings suggest a framework for tailoring the rheological response of disordered materials by tuning microstructural properties.
Whether and when a material deforms elastically or plastically depends on its microstructure. Experiments on two-dimensional colloidal systems show that in disordered materials, packing density, stress and a microstructure-related entropy govern deformations. |
doi_str_mv | 10.1038/s41567-022-01536-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2663837765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663837765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-64c8501190365651117382aa65f85278c8e961b01f3d4987003e29a18467595e3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AUxBdRsFa_gKcFr0b37Wb_HaVoFQqK6HnZJi82pUnqbkLpt3drRG-eZuDNzIMfIZfAboAJcxtzkEpnjPOMgRQqs0dkAjqXGc8NHP96LU7JWYxrxnKuQEzIyytufF93bVzV20iX2O8QWxr7MBT9EPCaNth0YU99W9Jq0-1ona4r9AFLWtaxCyUebON7DLXfxHNyUiXBix-dkveH-7fZY7Z4nj_N7hZZIcD2mcoLIxmAZUJJJQFAC8O9V7IykmtTGLQKlgwqUebWaMYEcuvB5EpLK1FMydW4uw3d54Cxd-tuCG166bhSwgitlUwpPqaK0MUYsHLbUDc-7B0wdyDnRnIukXPf5JxNJTGWYgq3Hxj-pv9pfQFhy2-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663837765</pqid></control><display><type>article</type><title>Relationships between structure, memory and flow in sheared disordered materials</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Galloway, K. L. ; Teich, E. G. ; Ma, X. G. ; Kammer, Ch ; Graham, I. R. ; Keim, N. C. ; Reina, C. ; Jerolmack, D. J. ; Yodh, A. G. ; Arratia, P. E.</creator><creatorcontrib>Galloway, K. L. ; Teich, E. G. ; Ma, X. G. ; Kammer, Ch ; Graham, I. R. ; Keim, N. C. ; Reina, C. ; Jerolmack, D. J. ; Yodh, A. G. ; Arratia, P. E.</creatorcontrib><description>A fundamental challenge regarding disordered solids is predicting macroscopic yield—the point at which elastic behaviour changes to plastic behaviour—from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset of plastic rearrangements. This suggests that one path to understanding bulk rheology is to map particle configurations to their mode of deformation. Here, we subject two-dimensional dense colloidal systems to oscillatory shear, measure the particle trajectories and bulk rheology, and quantify particle microstructure using excess entropy. Our results reveal a direct relation between excess entropy and energy dissipation that is insensitive to the nature of interactions amongst particles. We use this relation to build a physically informed model that connects rheology to microstructure. Our findings suggest a framework for tailoring the rheological response of disordered materials by tuning microstructural properties.
Whether and when a material deforms elastically or plastically depends on its microstructure. Experiments on two-dimensional colloidal systems show that in disordered materials, packing density, stress and a microstructure-related entropy govern deformations.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-022-01536-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/303 ; 639/301/923/916 ; 639/766/530/2795 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Deformation ; Elasticity ; Energy dissipation ; Entropy ; Mathematical and Computational Physics ; Microstructure ; Molecular ; Optical and Plasma Physics ; Packing density ; Particle trajectories ; Physics ; Physics and Astronomy ; Plasticity ; Rheological properties ; Rheology ; Theoretical ; Trajectory measurement</subject><ispartof>Nature physics, 2022-05, Vol.18 (5), p.565-570</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-64c8501190365651117382aa65f85278c8e961b01f3d4987003e29a18467595e3</citedby><cites>FETCH-LOGICAL-c319t-64c8501190365651117382aa65f85278c8e961b01f3d4987003e29a18467595e3</cites><orcidid>0000-0002-2566-2663 ; 0000-0001-8407-6923 ; 0000-0003-4744-2706 ; 0000-0001-7553-7054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-022-01536-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-022-01536-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Galloway, K. L.</creatorcontrib><creatorcontrib>Teich, E. G.</creatorcontrib><creatorcontrib>Ma, X. G.</creatorcontrib><creatorcontrib>Kammer, Ch</creatorcontrib><creatorcontrib>Graham, I. R.</creatorcontrib><creatorcontrib>Keim, N. C.</creatorcontrib><creatorcontrib>Reina, C.</creatorcontrib><creatorcontrib>Jerolmack, D. J.</creatorcontrib><creatorcontrib>Yodh, A. G.</creatorcontrib><creatorcontrib>Arratia, P. E.</creatorcontrib><title>Relationships between structure, memory and flow in sheared disordered materials</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>A fundamental challenge regarding disordered solids is predicting macroscopic yield—the point at which elastic behaviour changes to plastic behaviour—from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset of plastic rearrangements. This suggests that one path to understanding bulk rheology is to map particle configurations to their mode of deformation. Here, we subject two-dimensional dense colloidal systems to oscillatory shear, measure the particle trajectories and bulk rheology, and quantify particle microstructure using excess entropy. Our results reveal a direct relation between excess entropy and energy dissipation that is insensitive to the nature of interactions amongst particles. We use this relation to build a physically informed model that connects rheology to microstructure. Our findings suggest a framework for tailoring the rheological response of disordered materials by tuning microstructural properties.
Whether and when a material deforms elastically or plastically depends on its microstructure. Experiments on two-dimensional colloidal systems show that in disordered materials, packing density, stress and a microstructure-related entropy govern deformations.</description><subject>639/301/1023/303</subject><subject>639/301/923/916</subject><subject>639/766/530/2795</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Deformation</subject><subject>Elasticity</subject><subject>Energy dissipation</subject><subject>Entropy</subject><subject>Mathematical and Computational Physics</subject><subject>Microstructure</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Packing density</subject><subject>Particle trajectories</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasticity</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Theoretical</subject><subject>Trajectory measurement</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9Lw0AUxBdRsFa_gKcFr0b37Wb_HaVoFQqK6HnZJi82pUnqbkLpt3drRG-eZuDNzIMfIZfAboAJcxtzkEpnjPOMgRQqs0dkAjqXGc8NHP96LU7JWYxrxnKuQEzIyytufF93bVzV20iX2O8QWxr7MBT9EPCaNth0YU99W9Jq0-1ona4r9AFLWtaxCyUebON7DLXfxHNyUiXBix-dkveH-7fZY7Z4nj_N7hZZIcD2mcoLIxmAZUJJJQFAC8O9V7IykmtTGLQKlgwqUebWaMYEcuvB5EpLK1FMydW4uw3d54Cxd-tuCG166bhSwgitlUwpPqaK0MUYsHLbUDc-7B0wdyDnRnIukXPf5JxNJTGWYgq3Hxj-pv9pfQFhy2-U</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Galloway, K. L.</creator><creator>Teich, E. G.</creator><creator>Ma, X. G.</creator><creator>Kammer, Ch</creator><creator>Graham, I. R.</creator><creator>Keim, N. C.</creator><creator>Reina, C.</creator><creator>Jerolmack, D. J.</creator><creator>Yodh, A. G.</creator><creator>Arratia, P. E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2566-2663</orcidid><orcidid>https://orcid.org/0000-0001-8407-6923</orcidid><orcidid>https://orcid.org/0000-0003-4744-2706</orcidid><orcidid>https://orcid.org/0000-0001-7553-7054</orcidid></search><sort><creationdate>20220501</creationdate><title>Relationships between structure, memory and flow in sheared disordered materials</title><author>Galloway, K. L. ; Teich, E. G. ; Ma, X. G. ; Kammer, Ch ; Graham, I. R. ; Keim, N. C. ; Reina, C. ; Jerolmack, D. J. ; Yodh, A. G. ; Arratia, P. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-64c8501190365651117382aa65f85278c8e961b01f3d4987003e29a18467595e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/301/1023/303</topic><topic>639/301/923/916</topic><topic>639/766/530/2795</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Deformation</topic><topic>Elasticity</topic><topic>Energy dissipation</topic><topic>Entropy</topic><topic>Mathematical and Computational Physics</topic><topic>Microstructure</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Packing density</topic><topic>Particle trajectories</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasticity</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Theoretical</topic><topic>Trajectory measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galloway, K. L.</creatorcontrib><creatorcontrib>Teich, E. G.</creatorcontrib><creatorcontrib>Ma, X. G.</creatorcontrib><creatorcontrib>Kammer, Ch</creatorcontrib><creatorcontrib>Graham, I. R.</creatorcontrib><creatorcontrib>Keim, N. C.</creatorcontrib><creatorcontrib>Reina, C.</creatorcontrib><creatorcontrib>Jerolmack, D. J.</creatorcontrib><creatorcontrib>Yodh, A. G.</creatorcontrib><creatorcontrib>Arratia, P. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galloway, K. L.</au><au>Teich, E. G.</au><au>Ma, X. G.</au><au>Kammer, Ch</au><au>Graham, I. R.</au><au>Keim, N. C.</au><au>Reina, C.</au><au>Jerolmack, D. J.</au><au>Yodh, A. G.</au><au>Arratia, P. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationships between structure, memory and flow in sheared disordered materials</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>18</volume><issue>5</issue><spage>565</spage><epage>570</epage><pages>565-570</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>A fundamental challenge regarding disordered solids is predicting macroscopic yield—the point at which elastic behaviour changes to plastic behaviour—from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset of plastic rearrangements. This suggests that one path to understanding bulk rheology is to map particle configurations to their mode of deformation. Here, we subject two-dimensional dense colloidal systems to oscillatory shear, measure the particle trajectories and bulk rheology, and quantify particle microstructure using excess entropy. Our results reveal a direct relation between excess entropy and energy dissipation that is insensitive to the nature of interactions amongst particles. We use this relation to build a physically informed model that connects rheology to microstructure. Our findings suggest a framework for tailoring the rheological response of disordered materials by tuning microstructural properties.
Whether and when a material deforms elastically or plastically depends on its microstructure. Experiments on two-dimensional colloidal systems show that in disordered materials, packing density, stress and a microstructure-related entropy govern deformations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-022-01536-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2566-2663</orcidid><orcidid>https://orcid.org/0000-0001-8407-6923</orcidid><orcidid>https://orcid.org/0000-0003-4744-2706</orcidid><orcidid>https://orcid.org/0000-0001-7553-7054</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2022-05, Vol.18 (5), p.565-570 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2663837765 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/301/1023/303 639/301/923/916 639/766/530/2795 Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Deformation Elasticity Energy dissipation Entropy Mathematical and Computational Physics Microstructure Molecular Optical and Plasma Physics Packing density Particle trajectories Physics Physics and Astronomy Plasticity Rheological properties Rheology Theoretical Trajectory measurement |
title | Relationships between structure, memory and flow in sheared disordered materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationships%20between%20structure,%20memory%20and%20flow%20in%20sheared%20disordered%20materials&rft.jtitle=Nature%20physics&rft.au=Galloway,%20K.%20L.&rft.date=2022-05-01&rft.volume=18&rft.issue=5&rft.spage=565&rft.epage=570&rft.pages=565-570&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-022-01536-9&rft_dat=%3Cproquest_cross%3E2663837765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663837765&rft_id=info:pmid/&rfr_iscdi=true |