Relationships between structure, memory and flow in sheared disordered materials

A fundamental challenge regarding disordered solids is predicting macroscopic yield—the point at which elastic behaviour changes to plastic behaviour—from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2022-05, Vol.18 (5), p.565-570
Hauptverfasser: Galloway, K. L., Teich, E. G., Ma, X. G., Kammer, Ch, Graham, I. R., Keim, N. C., Reina, C., Jerolmack, D. J., Yodh, A. G., Arratia, P. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 570
container_issue 5
container_start_page 565
container_title Nature physics
container_volume 18
creator Galloway, K. L.
Teich, E. G.
Ma, X. G.
Kammer, Ch
Graham, I. R.
Keim, N. C.
Reina, C.
Jerolmack, D. J.
Yodh, A. G.
Arratia, P. E.
description A fundamental challenge regarding disordered solids is predicting macroscopic yield—the point at which elastic behaviour changes to plastic behaviour—from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset of plastic rearrangements. This suggests that one path to understanding bulk rheology is to map particle configurations to their mode of deformation. Here, we subject two-dimensional dense colloidal systems to oscillatory shear, measure the particle trajectories and bulk rheology, and quantify particle microstructure using excess entropy. Our results reveal a direct relation between excess entropy and energy dissipation that is insensitive to the nature of interactions amongst particles. We use this relation to build a physically informed model that connects rheology to microstructure. Our findings suggest a framework for tailoring the rheological response of disordered materials by tuning microstructural properties. Whether and when a material deforms elastically or plastically depends on its microstructure. Experiments on two-dimensional colloidal systems show that in disordered materials, packing density, stress and a microstructure-related entropy govern deformations.
doi_str_mv 10.1038/s41567-022-01536-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2663837765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663837765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-64c8501190365651117382aa65f85278c8e961b01f3d4987003e29a18467595e3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AUxBdRsFa_gKcFr0b37Wb_HaVoFQqK6HnZJi82pUnqbkLpt3drRG-eZuDNzIMfIZfAboAJcxtzkEpnjPOMgRQqs0dkAjqXGc8NHP96LU7JWYxrxnKuQEzIyytufF93bVzV20iX2O8QWxr7MBT9EPCaNth0YU99W9Jq0-1ona4r9AFLWtaxCyUebON7DLXfxHNyUiXBix-dkveH-7fZY7Z4nj_N7hZZIcD2mcoLIxmAZUJJJQFAC8O9V7IykmtTGLQKlgwqUebWaMYEcuvB5EpLK1FMydW4uw3d54Cxd-tuCG166bhSwgitlUwpPqaK0MUYsHLbUDc-7B0wdyDnRnIukXPf5JxNJTGWYgq3Hxj-pv9pfQFhy2-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663837765</pqid></control><display><type>article</type><title>Relationships between structure, memory and flow in sheared disordered materials</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Galloway, K. L. ; Teich, E. G. ; Ma, X. G. ; Kammer, Ch ; Graham, I. R. ; Keim, N. C. ; Reina, C. ; Jerolmack, D. J. ; Yodh, A. G. ; Arratia, P. E.</creator><creatorcontrib>Galloway, K. L. ; Teich, E. G. ; Ma, X. G. ; Kammer, Ch ; Graham, I. R. ; Keim, N. C. ; Reina, C. ; Jerolmack, D. J. ; Yodh, A. G. ; Arratia, P. E.</creatorcontrib><description>A fundamental challenge regarding disordered solids is predicting macroscopic yield—the point at which elastic behaviour changes to plastic behaviour—from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset of plastic rearrangements. This suggests that one path to understanding bulk rheology is to map particle configurations to their mode of deformation. Here, we subject two-dimensional dense colloidal systems to oscillatory shear, measure the particle trajectories and bulk rheology, and quantify particle microstructure using excess entropy. Our results reveal a direct relation between excess entropy and energy dissipation that is insensitive to the nature of interactions amongst particles. We use this relation to build a physically informed model that connects rheology to microstructure. Our findings suggest a framework for tailoring the rheological response of disordered materials by tuning microstructural properties. Whether and when a material deforms elastically or plastically depends on its microstructure. Experiments on two-dimensional colloidal systems show that in disordered materials, packing density, stress and a microstructure-related entropy govern deformations.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-022-01536-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/303 ; 639/301/923/916 ; 639/766/530/2795 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Deformation ; Elasticity ; Energy dissipation ; Entropy ; Mathematical and Computational Physics ; Microstructure ; Molecular ; Optical and Plasma Physics ; Packing density ; Particle trajectories ; Physics ; Physics and Astronomy ; Plasticity ; Rheological properties ; Rheology ; Theoretical ; Trajectory measurement</subject><ispartof>Nature physics, 2022-05, Vol.18 (5), p.565-570</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-64c8501190365651117382aa65f85278c8e961b01f3d4987003e29a18467595e3</citedby><cites>FETCH-LOGICAL-c319t-64c8501190365651117382aa65f85278c8e961b01f3d4987003e29a18467595e3</cites><orcidid>0000-0002-2566-2663 ; 0000-0001-8407-6923 ; 0000-0003-4744-2706 ; 0000-0001-7553-7054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-022-01536-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-022-01536-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Galloway, K. L.</creatorcontrib><creatorcontrib>Teich, E. G.</creatorcontrib><creatorcontrib>Ma, X. G.</creatorcontrib><creatorcontrib>Kammer, Ch</creatorcontrib><creatorcontrib>Graham, I. R.</creatorcontrib><creatorcontrib>Keim, N. C.</creatorcontrib><creatorcontrib>Reina, C.</creatorcontrib><creatorcontrib>Jerolmack, D. J.</creatorcontrib><creatorcontrib>Yodh, A. G.</creatorcontrib><creatorcontrib>Arratia, P. E.</creatorcontrib><title>Relationships between structure, memory and flow in sheared disordered materials</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>A fundamental challenge regarding disordered solids is predicting macroscopic yield—the point at which elastic behaviour changes to plastic behaviour—from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset of plastic rearrangements. This suggests that one path to understanding bulk rheology is to map particle configurations to their mode of deformation. Here, we subject two-dimensional dense colloidal systems to oscillatory shear, measure the particle trajectories and bulk rheology, and quantify particle microstructure using excess entropy. Our results reveal a direct relation between excess entropy and energy dissipation that is insensitive to the nature of interactions amongst particles. We use this relation to build a physically informed model that connects rheology to microstructure. Our findings suggest a framework for tailoring the rheological response of disordered materials by tuning microstructural properties. Whether and when a material deforms elastically or plastically depends on its microstructure. Experiments on two-dimensional colloidal systems show that in disordered materials, packing density, stress and a microstructure-related entropy govern deformations.</description><subject>639/301/1023/303</subject><subject>639/301/923/916</subject><subject>639/766/530/2795</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Deformation</subject><subject>Elasticity</subject><subject>Energy dissipation</subject><subject>Entropy</subject><subject>Mathematical and Computational Physics</subject><subject>Microstructure</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Packing density</subject><subject>Particle trajectories</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasticity</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Theoretical</subject><subject>Trajectory measurement</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9Lw0AUxBdRsFa_gKcFr0b37Wb_HaVoFQqK6HnZJi82pUnqbkLpt3drRG-eZuDNzIMfIZfAboAJcxtzkEpnjPOMgRQqs0dkAjqXGc8NHP96LU7JWYxrxnKuQEzIyytufF93bVzV20iX2O8QWxr7MBT9EPCaNth0YU99W9Jq0-1ona4r9AFLWtaxCyUebON7DLXfxHNyUiXBix-dkveH-7fZY7Z4nj_N7hZZIcD2mcoLIxmAZUJJJQFAC8O9V7IykmtTGLQKlgwqUebWaMYEcuvB5EpLK1FMydW4uw3d54Cxd-tuCG166bhSwgitlUwpPqaK0MUYsHLbUDc-7B0wdyDnRnIukXPf5JxNJTGWYgq3Hxj-pv9pfQFhy2-U</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Galloway, K. L.</creator><creator>Teich, E. G.</creator><creator>Ma, X. G.</creator><creator>Kammer, Ch</creator><creator>Graham, I. R.</creator><creator>Keim, N. C.</creator><creator>Reina, C.</creator><creator>Jerolmack, D. J.</creator><creator>Yodh, A. G.</creator><creator>Arratia, P. E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2566-2663</orcidid><orcidid>https://orcid.org/0000-0001-8407-6923</orcidid><orcidid>https://orcid.org/0000-0003-4744-2706</orcidid><orcidid>https://orcid.org/0000-0001-7553-7054</orcidid></search><sort><creationdate>20220501</creationdate><title>Relationships between structure, memory and flow in sheared disordered materials</title><author>Galloway, K. L. ; Teich, E. G. ; Ma, X. G. ; Kammer, Ch ; Graham, I. R. ; Keim, N. C. ; Reina, C. ; Jerolmack, D. J. ; Yodh, A. G. ; Arratia, P. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-64c8501190365651117382aa65f85278c8e961b01f3d4987003e29a18467595e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/301/1023/303</topic><topic>639/301/923/916</topic><topic>639/766/530/2795</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Deformation</topic><topic>Elasticity</topic><topic>Energy dissipation</topic><topic>Entropy</topic><topic>Mathematical and Computational Physics</topic><topic>Microstructure</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Packing density</topic><topic>Particle trajectories</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasticity</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Theoretical</topic><topic>Trajectory measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galloway, K. L.</creatorcontrib><creatorcontrib>Teich, E. G.</creatorcontrib><creatorcontrib>Ma, X. G.</creatorcontrib><creatorcontrib>Kammer, Ch</creatorcontrib><creatorcontrib>Graham, I. R.</creatorcontrib><creatorcontrib>Keim, N. C.</creatorcontrib><creatorcontrib>Reina, C.</creatorcontrib><creatorcontrib>Jerolmack, D. J.</creatorcontrib><creatorcontrib>Yodh, A. G.</creatorcontrib><creatorcontrib>Arratia, P. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galloway, K. L.</au><au>Teich, E. G.</au><au>Ma, X. G.</au><au>Kammer, Ch</au><au>Graham, I. R.</au><au>Keim, N. C.</au><au>Reina, C.</au><au>Jerolmack, D. J.</au><au>Yodh, A. G.</au><au>Arratia, P. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationships between structure, memory and flow in sheared disordered materials</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>18</volume><issue>5</issue><spage>565</spage><epage>570</epage><pages>565-570</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>A fundamental challenge regarding disordered solids is predicting macroscopic yield—the point at which elastic behaviour changes to plastic behaviour—from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset of plastic rearrangements. This suggests that one path to understanding bulk rheology is to map particle configurations to their mode of deformation. Here, we subject two-dimensional dense colloidal systems to oscillatory shear, measure the particle trajectories and bulk rheology, and quantify particle microstructure using excess entropy. Our results reveal a direct relation between excess entropy and energy dissipation that is insensitive to the nature of interactions amongst particles. We use this relation to build a physically informed model that connects rheology to microstructure. Our findings suggest a framework for tailoring the rheological response of disordered materials by tuning microstructural properties. Whether and when a material deforms elastically or plastically depends on its microstructure. Experiments on two-dimensional colloidal systems show that in disordered materials, packing density, stress and a microstructure-related entropy govern deformations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-022-01536-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2566-2663</orcidid><orcidid>https://orcid.org/0000-0001-8407-6923</orcidid><orcidid>https://orcid.org/0000-0003-4744-2706</orcidid><orcidid>https://orcid.org/0000-0001-7553-7054</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2022-05, Vol.18 (5), p.565-570
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2663837765
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/301/1023/303
639/301/923/916
639/766/530/2795
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Deformation
Elasticity
Energy dissipation
Entropy
Mathematical and Computational Physics
Microstructure
Molecular
Optical and Plasma Physics
Packing density
Particle trajectories
Physics
Physics and Astronomy
Plasticity
Rheological properties
Rheology
Theoretical
Trajectory measurement
title Relationships between structure, memory and flow in sheared disordered materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationships%20between%20structure,%20memory%20and%20flow%20in%20sheared%20disordered%20materials&rft.jtitle=Nature%20physics&rft.au=Galloway,%20K.%20L.&rft.date=2022-05-01&rft.volume=18&rft.issue=5&rft.spage=565&rft.epage=570&rft.pages=565-570&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-022-01536-9&rft_dat=%3Cproquest_cross%3E2663837765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663837765&rft_id=info:pmid/&rfr_iscdi=true