Selection of an optimal parametric combination for achieving a better surface finish in dry milling using genetic algorithms

In machining, coolants improve machinability, increase productivity by reducing tool wear and extend tool life. However, due to ecological and human health problems, manufacturing industries are now being forced to implement strategies to reduce the amount of cutting fluids used in their production...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2006-03, Vol.28 (5-6), p.463-473
Hauptverfasser: Reddy, N. Suresh Kumar, Rao, P. Venkateswara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 473
container_issue 5-6
container_start_page 463
container_title International journal of advanced manufacturing technology
container_volume 28
creator Reddy, N. Suresh Kumar
Rao, P. Venkateswara
description In machining, coolants improve machinability, increase productivity by reducing tool wear and extend tool life. However, due to ecological and human health problems, manufacturing industries are now being forced to implement strategies to reduce the amount of cutting fluids used in their production lines. A trend that has emerged to solve these problems is machining without fluid – a method called dry machining – which has been made possible due to technological innovations. This paper presents an experimental investigation of the influence of tool geometry (radial rake angle and nose radius) and cutting conditions (cutting speed and feed rate) on machining performance in dry milling with four fluted solid TiAlN-coated carbide end mill cutters based on Taguchi’s experimental design method. The mathematical model, in terms of machining parameters, was developed for surface roughness prediction using response surface methodology. The optimization is then carried out with genetic algorithms using the surface roughness model developed and validated in this work. This methodology helps to determine the best possible tool geometry and cutting conditions for dry milling.
doi_str_mv 10.1007/s00170-004-2381-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2663826916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663826916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-bf834cd39ca5cd16a026c548055400cd0a860249fca615bfd1ff81020b9e2a1c3</originalsourceid><addsrcrecordid>eNp9kctKAzEUhoMoWKsP4C7gOnqSzGQySyneoOBCXYdMJmlT5maSCgUf3ox17eaczcd_Lh9C1xRuKUB1FwFoBQSgIIxLSvgJWtCCc8KBlqdoAUxIwishz9FFjLtMCyrkAn2_2c6a5McBjw7rXKfke93hSQfd2xS8wWbsGz_oX8iNAWuz9fbLDxuscWNTsgHHfXDaWOz84OMW-wG34YB733Uzto9z3djBphynu80YfNr28RKdOd1Fe_XXl-jj8eF99UzWr08vq_s1MXn7RBoneWFaXhtdmpYKnY8xZSGhLAsA04KWAlhRO6MFLRvXUuckBQZNbZmmhi_RzTF3CuPn3sakduM-DHmkYkJwyURNxb8UE6yEsqplpuiRMmGMMVinppAfFg6KgppVqKMKlVWoWYXi_Ad9yH0p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262505798</pqid></control><display><type>article</type><title>Selection of an optimal parametric combination for achieving a better surface finish in dry milling using genetic algorithms</title><source>Springer Nature - Complete Springer Journals</source><creator>Reddy, N. Suresh Kumar ; Rao, P. Venkateswara</creator><creatorcontrib>Reddy, N. Suresh Kumar ; Rao, P. Venkateswara</creatorcontrib><description>In machining, coolants improve machinability, increase productivity by reducing tool wear and extend tool life. However, due to ecological and human health problems, manufacturing industries are now being forced to implement strategies to reduce the amount of cutting fluids used in their production lines. A trend that has emerged to solve these problems is machining without fluid – a method called dry machining – which has been made possible due to technological innovations. This paper presents an experimental investigation of the influence of tool geometry (radial rake angle and nose radius) and cutting conditions (cutting speed and feed rate) on machining performance in dry milling with four fluted solid TiAlN-coated carbide end mill cutters based on Taguchi’s experimental design method. The mathematical model, in terms of machining parameters, was developed for surface roughness prediction using response surface methodology. The optimization is then carried out with genetic algorithms using the surface roughness model developed and validated in this work. This methodology helps to determine the best possible tool geometry and cutting conditions for dry milling.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-004-2381-3</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Computational fluid dynamics ; Coolants ; Cutting fluids ; Cutting parameters ; Cutting speed ; Cutting tools ; Design of experiments ; Dry machining ; End milling cutters ; Feed rate ; Genetic algorithms ; Machinability ; Mathematical models ; Milling (machining) ; Optimization ; Process parameters ; Production lines ; Rake angle ; Rapid prototyping ; Response surface methodology ; Surface finish ; Surface roughness ; Taguchi methods ; Tool life ; Tool wear</subject><ispartof>International journal of advanced manufacturing technology, 2006-03, Vol.28 (5-6), p.463-473</ispartof><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2005). All Rights Reserved.</rights><rights>Springer-Verlag 2005.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-bf834cd39ca5cd16a026c548055400cd0a860249fca615bfd1ff81020b9e2a1c3</citedby><cites>FETCH-LOGICAL-c301t-bf834cd39ca5cd16a026c548055400cd0a860249fca615bfd1ff81020b9e2a1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Reddy, N. Suresh Kumar</creatorcontrib><creatorcontrib>Rao, P. Venkateswara</creatorcontrib><title>Selection of an optimal parametric combination for achieving a better surface finish in dry milling using genetic algorithms</title><title>International journal of advanced manufacturing technology</title><description>In machining, coolants improve machinability, increase productivity by reducing tool wear and extend tool life. However, due to ecological and human health problems, manufacturing industries are now being forced to implement strategies to reduce the amount of cutting fluids used in their production lines. A trend that has emerged to solve these problems is machining without fluid – a method called dry machining – which has been made possible due to technological innovations. This paper presents an experimental investigation of the influence of tool geometry (radial rake angle and nose radius) and cutting conditions (cutting speed and feed rate) on machining performance in dry milling with four fluted solid TiAlN-coated carbide end mill cutters based on Taguchi’s experimental design method. The mathematical model, in terms of machining parameters, was developed for surface roughness prediction using response surface methodology. The optimization is then carried out with genetic algorithms using the surface roughness model developed and validated in this work. This methodology helps to determine the best possible tool geometry and cutting conditions for dry milling.</description><subject>Computational fluid dynamics</subject><subject>Coolants</subject><subject>Cutting fluids</subject><subject>Cutting parameters</subject><subject>Cutting speed</subject><subject>Cutting tools</subject><subject>Design of experiments</subject><subject>Dry machining</subject><subject>End milling cutters</subject><subject>Feed rate</subject><subject>Genetic algorithms</subject><subject>Machinability</subject><subject>Mathematical models</subject><subject>Milling (machining)</subject><subject>Optimization</subject><subject>Process parameters</subject><subject>Production lines</subject><subject>Rake angle</subject><subject>Rapid prototyping</subject><subject>Response surface methodology</subject><subject>Surface finish</subject><subject>Surface roughness</subject><subject>Taguchi methods</subject><subject>Tool life</subject><subject>Tool wear</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kctKAzEUhoMoWKsP4C7gOnqSzGQySyneoOBCXYdMJmlT5maSCgUf3ox17eaczcd_Lh9C1xRuKUB1FwFoBQSgIIxLSvgJWtCCc8KBlqdoAUxIwishz9FFjLtMCyrkAn2_2c6a5McBjw7rXKfke93hSQfd2xS8wWbsGz_oX8iNAWuz9fbLDxuscWNTsgHHfXDaWOz84OMW-wG34YB733Uzto9z3djBphynu80YfNr28RKdOd1Fe_XXl-jj8eF99UzWr08vq_s1MXn7RBoneWFaXhtdmpYKnY8xZSGhLAsA04KWAlhRO6MFLRvXUuckBQZNbZmmhi_RzTF3CuPn3sakduM-DHmkYkJwyURNxb8UE6yEsqplpuiRMmGMMVinppAfFg6KgppVqKMKlVWoWYXi_Ad9yH0p</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Reddy, N. Suresh Kumar</creator><creator>Rao, P. Venkateswara</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20060301</creationdate><title>Selection of an optimal parametric combination for achieving a better surface finish in dry milling using genetic algorithms</title><author>Reddy, N. Suresh Kumar ; Rao, P. Venkateswara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-bf834cd39ca5cd16a026c548055400cd0a860249fca615bfd1ff81020b9e2a1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computational fluid dynamics</topic><topic>Coolants</topic><topic>Cutting fluids</topic><topic>Cutting parameters</topic><topic>Cutting speed</topic><topic>Cutting tools</topic><topic>Design of experiments</topic><topic>Dry machining</topic><topic>End milling cutters</topic><topic>Feed rate</topic><topic>Genetic algorithms</topic><topic>Machinability</topic><topic>Mathematical models</topic><topic>Milling (machining)</topic><topic>Optimization</topic><topic>Process parameters</topic><topic>Production lines</topic><topic>Rake angle</topic><topic>Rapid prototyping</topic><topic>Response surface methodology</topic><topic>Surface finish</topic><topic>Surface roughness</topic><topic>Taguchi methods</topic><topic>Tool life</topic><topic>Tool wear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, N. Suresh Kumar</creatorcontrib><creatorcontrib>Rao, P. Venkateswara</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, N. Suresh Kumar</au><au>Rao, P. Venkateswara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of an optimal parametric combination for achieving a better surface finish in dry milling using genetic algorithms</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>28</volume><issue>5-6</issue><spage>463</spage><epage>473</epage><pages>463-473</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In machining, coolants improve machinability, increase productivity by reducing tool wear and extend tool life. However, due to ecological and human health problems, manufacturing industries are now being forced to implement strategies to reduce the amount of cutting fluids used in their production lines. A trend that has emerged to solve these problems is machining without fluid – a method called dry machining – which has been made possible due to technological innovations. This paper presents an experimental investigation of the influence of tool geometry (radial rake angle and nose radius) and cutting conditions (cutting speed and feed rate) on machining performance in dry milling with four fluted solid TiAlN-coated carbide end mill cutters based on Taguchi’s experimental design method. The mathematical model, in terms of machining parameters, was developed for surface roughness prediction using response surface methodology. The optimization is then carried out with genetic algorithms using the surface roughness model developed and validated in this work. This methodology helps to determine the best possible tool geometry and cutting conditions for dry milling.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00170-004-2381-3</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2006-03, Vol.28 (5-6), p.463-473
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2663826916
source Springer Nature - Complete Springer Journals
subjects Computational fluid dynamics
Coolants
Cutting fluids
Cutting parameters
Cutting speed
Cutting tools
Design of experiments
Dry machining
End milling cutters
Feed rate
Genetic algorithms
Machinability
Mathematical models
Milling (machining)
Optimization
Process parameters
Production lines
Rake angle
Rapid prototyping
Response surface methodology
Surface finish
Surface roughness
Taguchi methods
Tool life
Tool wear
title Selection of an optimal parametric combination for achieving a better surface finish in dry milling using genetic algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20an%20optimal%20parametric%20combination%20for%20achieving%20a%20better%20surface%20finish%20in%20dry%20milling%20using%20genetic%20algorithms&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Reddy,%20N.%20Suresh%20Kumar&rft.date=2006-03-01&rft.volume=28&rft.issue=5-6&rft.spage=463&rft.epage=473&rft.pages=463-473&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-004-2381-3&rft_dat=%3Cproquest_cross%3E2663826916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262505798&rft_id=info:pmid/&rfr_iscdi=true