Selective Listening by Synchronizing Speech With Lips
A speaker extraction algorithm seeks to extract the speech of a target speaker from a multi-talker speech mixture when given a cue that represents the target speaker, such as a pre-enrolled speech utterance, or an accompanying video track. Visual cues are particularly useful when a pre-enrolled spee...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2022, Vol.30, p.1650-1664 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1664 |
---|---|
container_issue | |
container_start_page | 1650 |
container_title | IEEE/ACM transactions on audio, speech, and language processing |
container_volume | 30 |
creator | Pan, Zexu Tao, Ruijie Xu, Chenglin Li, Haizhou |
description | A speaker extraction algorithm seeks to extract the speech of a target speaker from a multi-talker speech mixture when given a cue that represents the target speaker, such as a pre-enrolled speech utterance, or an accompanying video track. Visual cues are particularly useful when a pre-enrolled speech is not available. In this work, we don't rely on the target speaker's pre-enrolled speech, but rather use the target speaker's face track as the speaker cue, that is referred to as the auxiliary reference, to form an attractor towards the target speaker. We advocate that the temporal synchronization between the speech and its accompanying lip movements is a direct and dominant audio-visual cue. Therefore, we propose a self-supervised pre-training strategy, to exploit the speech-lip synchronization cue for target speaker extraction, which allows us to leverage abundant unlabeled in-domain data. We transfer the knowledge from the pre-trained model to the attractor encoder of the speaker extraction network. We show that the proposed speaker extraction network outperforms various competitive baselines in terms of signal quality, perceptual quality, and intelligibility, achieving state-of-the-art performance. |
doi_str_mv | 10.1109/TASLP.2022.3153258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2663643620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9721129</ieee_id><sourcerecordid>2663643620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-32735bea97a10f6f560925196f8888d3afde9720242976017072e6bbd8b434e03</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsNT-Ab0EPKfOzia72WMpaoWAQioelySdmC01ibupUH-9ia3OZYbhvZnHx9g1hznnoO_Wiyx9mSMgzgWPBcbJGZugQB1qAdH534waLtnM-y0AcFBaq2jC4ox2VPb2i4LU-p4a27wHxSHIDk1Zu7ax3-Mi64jKOnizfT3IOn_FLqp852l26lP2-nC_Xq7C9PnxablIwxKl7kOBSsQF5VrlHCpZxRI0xlzLKhlqI_JqQ1oNwSPUSgJXoJBkUWySIhIRgZiy2-PdzrWfe_K92bZ71wwvDUopZCQkjio8qkrXeu-oMp2zH7k7GA5mJGR-CZmRkDkRGkw3R5Mlon_DkIZz1OIHeWVfmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663643620</pqid></control><display><type>article</type><title>Selective Listening by Synchronizing Speech With Lips</title><source>Access via ACM Digital Library</source><source>IEEE Electronic Library (IEL)</source><creator>Pan, Zexu ; Tao, Ruijie ; Xu, Chenglin ; Li, Haizhou</creator><creatorcontrib>Pan, Zexu ; Tao, Ruijie ; Xu, Chenglin ; Li, Haizhou</creatorcontrib><description>A speaker extraction algorithm seeks to extract the speech of a target speaker from a multi-talker speech mixture when given a cue that represents the target speaker, such as a pre-enrolled speech utterance, or an accompanying video track. Visual cues are particularly useful when a pre-enrolled speech is not available. In this work, we don't rely on the target speaker's pre-enrolled speech, but rather use the target speaker's face track as the speaker cue, that is referred to as the auxiliary reference, to form an attractor towards the target speaker. We advocate that the temporal synchronization between the speech and its accompanying lip movements is a direct and dominant audio-visual cue. Therefore, we propose a self-supervised pre-training strategy, to exploit the speech-lip synchronization cue for target speaker extraction, which allows us to leverage abundant unlabeled in-domain data. We transfer the knowledge from the pre-trained model to the attractor encoder of the speaker extraction network. We show that the proposed speaker extraction network outperforms various competitive baselines in terms of signal quality, perceptual quality, and intelligibility, achieving state-of-the-art performance.</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2022.3153258</identifier><identifier>CODEN: ITASFA</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Coders ; Feature extraction ; Intelligibility ; Knowledge management ; Lips ; Multi-modal ; self-enrollment ; Signal quality ; speaker embedding ; Speech ; Speech processing ; Speech recognition ; speech-lip synchronization ; Synchronism ; Synchronization ; target speaker extraction ; Task analysis ; time-domain ; Tracking ; Visualization ; Voice recognition</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2022, Vol.30, p.1650-1664</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-32735bea97a10f6f560925196f8888d3afde9720242976017072e6bbd8b434e03</citedby><cites>FETCH-LOGICAL-c269t-32735bea97a10f6f560925196f8888d3afde9720242976017072e6bbd8b434e03</cites><orcidid>0000-0002-1584-6282 ; 0000-0001-9158-9401 ; 0000-0002-8106-1176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9721129$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,54763</link.rule.ids></links><search><creatorcontrib>Pan, Zexu</creatorcontrib><creatorcontrib>Tao, Ruijie</creatorcontrib><creatorcontrib>Xu, Chenglin</creatorcontrib><creatorcontrib>Li, Haizhou</creatorcontrib><title>Selective Listening by Synchronizing Speech With Lips</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>A speaker extraction algorithm seeks to extract the speech of a target speaker from a multi-talker speech mixture when given a cue that represents the target speaker, such as a pre-enrolled speech utterance, or an accompanying video track. Visual cues are particularly useful when a pre-enrolled speech is not available. In this work, we don't rely on the target speaker's pre-enrolled speech, but rather use the target speaker's face track as the speaker cue, that is referred to as the auxiliary reference, to form an attractor towards the target speaker. We advocate that the temporal synchronization between the speech and its accompanying lip movements is a direct and dominant audio-visual cue. Therefore, we propose a self-supervised pre-training strategy, to exploit the speech-lip synchronization cue for target speaker extraction, which allows us to leverage abundant unlabeled in-domain data. We transfer the knowledge from the pre-trained model to the attractor encoder of the speaker extraction network. We show that the proposed speaker extraction network outperforms various competitive baselines in terms of signal quality, perceptual quality, and intelligibility, achieving state-of-the-art performance.</description><subject>Algorithms</subject><subject>Coders</subject><subject>Feature extraction</subject><subject>Intelligibility</subject><subject>Knowledge management</subject><subject>Lips</subject><subject>Multi-modal</subject><subject>self-enrollment</subject><subject>Signal quality</subject><subject>speaker embedding</subject><subject>Speech</subject><subject>Speech processing</subject><subject>Speech recognition</subject><subject>speech-lip synchronization</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>target speaker extraction</subject><subject>Task analysis</subject><subject>time-domain</subject><subject>Tracking</subject><subject>Visualization</subject><subject>Voice recognition</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQhRdRsNT-Ab0EPKfOzia72WMpaoWAQioelySdmC01ibupUH-9ia3OZYbhvZnHx9g1hznnoO_Wiyx9mSMgzgWPBcbJGZugQB1qAdH534waLtnM-y0AcFBaq2jC4ox2VPb2i4LU-p4a27wHxSHIDk1Zu7ax3-Mi64jKOnizfT3IOn_FLqp852l26lP2-nC_Xq7C9PnxablIwxKl7kOBSsQF5VrlHCpZxRI0xlzLKhlqI_JqQ1oNwSPUSgJXoJBkUWySIhIRgZiy2-PdzrWfe_K92bZ71wwvDUopZCQkjio8qkrXeu-oMp2zH7k7GA5mJGR-CZmRkDkRGkw3R5Mlon_DkIZz1OIHeWVfmQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Pan, Zexu</creator><creator>Tao, Ruijie</creator><creator>Xu, Chenglin</creator><creator>Li, Haizhou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1584-6282</orcidid><orcidid>https://orcid.org/0000-0001-9158-9401</orcidid><orcidid>https://orcid.org/0000-0002-8106-1176</orcidid></search><sort><creationdate>2022</creationdate><title>Selective Listening by Synchronizing Speech With Lips</title><author>Pan, Zexu ; Tao, Ruijie ; Xu, Chenglin ; Li, Haizhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-32735bea97a10f6f560925196f8888d3afde9720242976017072e6bbd8b434e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Coders</topic><topic>Feature extraction</topic><topic>Intelligibility</topic><topic>Knowledge management</topic><topic>Lips</topic><topic>Multi-modal</topic><topic>self-enrollment</topic><topic>Signal quality</topic><topic>speaker embedding</topic><topic>Speech</topic><topic>Speech processing</topic><topic>Speech recognition</topic><topic>speech-lip synchronization</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>target speaker extraction</topic><topic>Task analysis</topic><topic>time-domain</topic><topic>Tracking</topic><topic>Visualization</topic><topic>Voice recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Zexu</creatorcontrib><creatorcontrib>Tao, Ruijie</creatorcontrib><creatorcontrib>Xu, Chenglin</creatorcontrib><creatorcontrib>Li, Haizhou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Zexu</au><au>Tao, Ruijie</au><au>Xu, Chenglin</au><au>Li, Haizhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Listening by Synchronizing Speech With Lips</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2022</date><risdate>2022</risdate><volume>30</volume><spage>1650</spage><epage>1664</epage><pages>1650-1664</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASFA</coden><abstract>A speaker extraction algorithm seeks to extract the speech of a target speaker from a multi-talker speech mixture when given a cue that represents the target speaker, such as a pre-enrolled speech utterance, or an accompanying video track. Visual cues are particularly useful when a pre-enrolled speech is not available. In this work, we don't rely on the target speaker's pre-enrolled speech, but rather use the target speaker's face track as the speaker cue, that is referred to as the auxiliary reference, to form an attractor towards the target speaker. We advocate that the temporal synchronization between the speech and its accompanying lip movements is a direct and dominant audio-visual cue. Therefore, we propose a self-supervised pre-training strategy, to exploit the speech-lip synchronization cue for target speaker extraction, which allows us to leverage abundant unlabeled in-domain data. We transfer the knowledge from the pre-trained model to the attractor encoder of the speaker extraction network. We show that the proposed speaker extraction network outperforms various competitive baselines in terms of signal quality, perceptual quality, and intelligibility, achieving state-of-the-art performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2022.3153258</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1584-6282</orcidid><orcidid>https://orcid.org/0000-0001-9158-9401</orcidid><orcidid>https://orcid.org/0000-0002-8106-1176</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2329-9290 |
ispartof | IEEE/ACM transactions on audio, speech, and language processing, 2022, Vol.30, p.1650-1664 |
issn | 2329-9290 2329-9304 |
language | eng |
recordid | cdi_proquest_journals_2663643620 |
source | Access via ACM Digital Library; IEEE Electronic Library (IEL) |
subjects | Algorithms Coders Feature extraction Intelligibility Knowledge management Lips Multi-modal self-enrollment Signal quality speaker embedding Speech Speech processing Speech recognition speech-lip synchronization Synchronism Synchronization target speaker extraction Task analysis time-domain Tracking Visualization Voice recognition |
title | Selective Listening by Synchronizing Speech With Lips |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T11%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Listening%20by%20Synchronizing%20Speech%20With%20Lips&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Pan,%20Zexu&rft.date=2022&rft.volume=30&rft.spage=1650&rft.epage=1664&rft.pages=1650-1664&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASFA&rft_id=info:doi/10.1109/TASLP.2022.3153258&rft_dat=%3Cproquest_cross%3E2663643620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663643620&rft_id=info:pmid/&rft_ieee_id=9721129&rfr_iscdi=true |