Explicit predictor–corrector method for nonlinear acoustic waves excited by a moving wave emitting boundary
We present an explicit finite difference time domain method to solve the lossless Westervelt equation for a moving wave emitting boundary in one dimension and in spherical symmetry. The approach is based on a coordinate transformation between a moving physical domain and a fixed computational domain...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2022-06, Vol.527, p.116814, Article 116814 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 116814 |
container_title | Journal of sound and vibration |
container_volume | 527 |
creator | Schenke, Sören Sewerin, Fabian van Wachem, Berend Denner, Fabian |
description | We present an explicit finite difference time domain method to solve the lossless Westervelt equation for a moving wave emitting boundary in one dimension and in spherical symmetry. The approach is based on a coordinate transformation between a moving physical domain and a fixed computational domain. This allows to simulate the combined effects of wave profile distortion due to the constitutive nonlinearity of the medium and the nonlinear Doppler modulation of a pressure wave due to the acceleration of the wave emitting boundary. A predictor–corrector method is employed to enhance the numerical stability of the method in the presence of shocks and grid motion. It is demonstrated that the method can accurately predict the Doppler shift of nonlinear wave distortion and the amplitude modulation caused by an oscillating motion of the wave emitting boundary. The novelty of the presented methodology lies in its capability to reflect the Doppler shift of the rate of nonlinear wave profile distortion and shock attenuation for finite amplitude acoustic waves emitted from an accelerating boundary.
•We present a model to compute nonlinear acoustic waves emitted from a moving boundary.•A predictor–corrector method dampens numerical dispersion in the explicit FDTD method.•The numerical scheme mimics the physical dissipation of energy across the shock front.•The motion of the wave emitter causes a Doppler shift of the shock formation distance.•Accelerating motion of the wave emitter results in amplitude and frequency modulation. |
doi_str_mv | 10.1016/j.jsv.2022.116814 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2663522235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X22000645</els_id><sourcerecordid>2663522235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-f443196a927ee206165a5e97c5e8d94d37c488e6d26ede8fff7f04d73e9e5c1b3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHaWWKfYju0kYoWq8iNVYgMSOyu1J-CoiYOdBLrjDtyQk-BQ1qxmRm_ezNOH0DklC0qovKwXdRgXjDC2oFTmlB-gGSWFSHIh80M0I1FJuCTPx-gkhJoQUvCUz1Cz-ui2Vtsedx6M1b3z359f2nkPU48b6F-dwVVsW9dubQulx6V2Q-itxu_lCAHDR_SDwZsdLnHjRtu-_CoYGtv307RxQ2tKvztFR1W5DXD2V-fo6Wb1uLxL1g-398vrdaJTJvqk4jylhSwLlgEwIqkUpYAi0wJyU3CTZprnOUjDJBjIq6rKKsJNlkIBQtNNOkcX-7udd28DhF7VbvBtfKmYlKlgjKUibtH9lvYuBA-V6rxtYkxFiZqoqlpFqmqiqvZUo-dq74EYf7TgVdAWWh3ZTcSUcfYf9w-ZKIMb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663522235</pqid></control><display><type>article</type><title>Explicit predictor–corrector method for nonlinear acoustic waves excited by a moving wave emitting boundary</title><source>Elsevier ScienceDirect Journals</source><creator>Schenke, Sören ; Sewerin, Fabian ; van Wachem, Berend ; Denner, Fabian</creator><creatorcontrib>Schenke, Sören ; Sewerin, Fabian ; van Wachem, Berend ; Denner, Fabian</creatorcontrib><description>We present an explicit finite difference time domain method to solve the lossless Westervelt equation for a moving wave emitting boundary in one dimension and in spherical symmetry. The approach is based on a coordinate transformation between a moving physical domain and a fixed computational domain. This allows to simulate the combined effects of wave profile distortion due to the constitutive nonlinearity of the medium and the nonlinear Doppler modulation of a pressure wave due to the acceleration of the wave emitting boundary. A predictor–corrector method is employed to enhance the numerical stability of the method in the presence of shocks and grid motion. It is demonstrated that the method can accurately predict the Doppler shift of nonlinear wave distortion and the amplitude modulation caused by an oscillating motion of the wave emitting boundary. The novelty of the presented methodology lies in its capability to reflect the Doppler shift of the rate of nonlinear wave profile distortion and shock attenuation for finite amplitude acoustic waves emitted from an accelerating boundary.
•We present a model to compute nonlinear acoustic waves emitted from a moving boundary.•A predictor–corrector method dampens numerical dispersion in the explicit FDTD method.•The numerical scheme mimics the physical dissipation of energy across the shock front.•The motion of the wave emitter causes a Doppler shift of the shock formation distance.•Accelerating motion of the wave emitter results in amplitude and frequency modulation.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2022.116814</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Acoustic attenuation ; Acoustic waves ; Acoustics ; Amplitude modulation ; Boundary conditions ; Coordinate transformations ; Distortion ; Doppler effect ; Elastic waves ; Explicit finite difference ; Finite difference time domain method ; Motion stability ; Moving boundary ; Nonlinear acoustics ; Nonlinear systems ; Nonlinearity ; Numerical stability ; Predictor-corrector methods ; Propagation ; Shock waves ; Surface waves ; Westervelt equation</subject><ispartof>Journal of sound and vibration, 2022-06, Vol.527, p.116814, Article 116814</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jun 9, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-f443196a927ee206165a5e97c5e8d94d37c488e6d26ede8fff7f04d73e9e5c1b3</citedby><cites>FETCH-LOGICAL-c325t-f443196a927ee206165a5e97c5e8d94d37c488e6d26ede8fff7f04d73e9e5c1b3</cites><orcidid>0000-0001-6588-7739 ; 0000-0001-8765-3722 ; 0000-0002-5399-4075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022460X22000645$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Schenke, Sören</creatorcontrib><creatorcontrib>Sewerin, Fabian</creatorcontrib><creatorcontrib>van Wachem, Berend</creatorcontrib><creatorcontrib>Denner, Fabian</creatorcontrib><title>Explicit predictor–corrector method for nonlinear acoustic waves excited by a moving wave emitting boundary</title><title>Journal of sound and vibration</title><description>We present an explicit finite difference time domain method to solve the lossless Westervelt equation for a moving wave emitting boundary in one dimension and in spherical symmetry. The approach is based on a coordinate transformation between a moving physical domain and a fixed computational domain. This allows to simulate the combined effects of wave profile distortion due to the constitutive nonlinearity of the medium and the nonlinear Doppler modulation of a pressure wave due to the acceleration of the wave emitting boundary. A predictor–corrector method is employed to enhance the numerical stability of the method in the presence of shocks and grid motion. It is demonstrated that the method can accurately predict the Doppler shift of nonlinear wave distortion and the amplitude modulation caused by an oscillating motion of the wave emitting boundary. The novelty of the presented methodology lies in its capability to reflect the Doppler shift of the rate of nonlinear wave profile distortion and shock attenuation for finite amplitude acoustic waves emitted from an accelerating boundary.
•We present a model to compute nonlinear acoustic waves emitted from a moving boundary.•A predictor–corrector method dampens numerical dispersion in the explicit FDTD method.•The numerical scheme mimics the physical dissipation of energy across the shock front.•The motion of the wave emitter causes a Doppler shift of the shock formation distance.•Accelerating motion of the wave emitter results in amplitude and frequency modulation.</description><subject>Acoustic attenuation</subject><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Amplitude modulation</subject><subject>Boundary conditions</subject><subject>Coordinate transformations</subject><subject>Distortion</subject><subject>Doppler effect</subject><subject>Elastic waves</subject><subject>Explicit finite difference</subject><subject>Finite difference time domain method</subject><subject>Motion stability</subject><subject>Moving boundary</subject><subject>Nonlinear acoustics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Numerical stability</subject><subject>Predictor-corrector methods</subject><subject>Propagation</subject><subject>Shock waves</subject><subject>Surface waves</subject><subject>Westervelt equation</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHaWWKfYju0kYoWq8iNVYgMSOyu1J-CoiYOdBLrjDtyQk-BQ1qxmRm_ezNOH0DklC0qovKwXdRgXjDC2oFTmlB-gGSWFSHIh80M0I1FJuCTPx-gkhJoQUvCUz1Cz-ui2Vtsedx6M1b3z359f2nkPU48b6F-dwVVsW9dubQulx6V2Q-itxu_lCAHDR_SDwZsdLnHjRtu-_CoYGtv307RxQ2tKvztFR1W5DXD2V-fo6Wb1uLxL1g-398vrdaJTJvqk4jylhSwLlgEwIqkUpYAi0wJyU3CTZprnOUjDJBjIq6rKKsJNlkIBQtNNOkcX-7udd28DhF7VbvBtfKmYlKlgjKUibtH9lvYuBA-V6rxtYkxFiZqoqlpFqmqiqvZUo-dq74EYf7TgVdAWWh3ZTcSUcfYf9w-ZKIMb</recordid><startdate>20220609</startdate><enddate>20220609</enddate><creator>Schenke, Sören</creator><creator>Sewerin, Fabian</creator><creator>van Wachem, Berend</creator><creator>Denner, Fabian</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-6588-7739</orcidid><orcidid>https://orcid.org/0000-0001-8765-3722</orcidid><orcidid>https://orcid.org/0000-0002-5399-4075</orcidid></search><sort><creationdate>20220609</creationdate><title>Explicit predictor–corrector method for nonlinear acoustic waves excited by a moving wave emitting boundary</title><author>Schenke, Sören ; Sewerin, Fabian ; van Wachem, Berend ; Denner, Fabian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-f443196a927ee206165a5e97c5e8d94d37c488e6d26ede8fff7f04d73e9e5c1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic attenuation</topic><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Amplitude modulation</topic><topic>Boundary conditions</topic><topic>Coordinate transformations</topic><topic>Distortion</topic><topic>Doppler effect</topic><topic>Elastic waves</topic><topic>Explicit finite difference</topic><topic>Finite difference time domain method</topic><topic>Motion stability</topic><topic>Moving boundary</topic><topic>Nonlinear acoustics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Numerical stability</topic><topic>Predictor-corrector methods</topic><topic>Propagation</topic><topic>Shock waves</topic><topic>Surface waves</topic><topic>Westervelt equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schenke, Sören</creatorcontrib><creatorcontrib>Sewerin, Fabian</creatorcontrib><creatorcontrib>van Wachem, Berend</creatorcontrib><creatorcontrib>Denner, Fabian</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schenke, Sören</au><au>Sewerin, Fabian</au><au>van Wachem, Berend</au><au>Denner, Fabian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit predictor–corrector method for nonlinear acoustic waves excited by a moving wave emitting boundary</atitle><jtitle>Journal of sound and vibration</jtitle><date>2022-06-09</date><risdate>2022</risdate><volume>527</volume><spage>116814</spage><pages>116814-</pages><artnum>116814</artnum><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>We present an explicit finite difference time domain method to solve the lossless Westervelt equation for a moving wave emitting boundary in one dimension and in spherical symmetry. The approach is based on a coordinate transformation between a moving physical domain and a fixed computational domain. This allows to simulate the combined effects of wave profile distortion due to the constitutive nonlinearity of the medium and the nonlinear Doppler modulation of a pressure wave due to the acceleration of the wave emitting boundary. A predictor–corrector method is employed to enhance the numerical stability of the method in the presence of shocks and grid motion. It is demonstrated that the method can accurately predict the Doppler shift of nonlinear wave distortion and the amplitude modulation caused by an oscillating motion of the wave emitting boundary. The novelty of the presented methodology lies in its capability to reflect the Doppler shift of the rate of nonlinear wave profile distortion and shock attenuation for finite amplitude acoustic waves emitted from an accelerating boundary.
•We present a model to compute nonlinear acoustic waves emitted from a moving boundary.•A predictor–corrector method dampens numerical dispersion in the explicit FDTD method.•The numerical scheme mimics the physical dissipation of energy across the shock front.•The motion of the wave emitter causes a Doppler shift of the shock formation distance.•Accelerating motion of the wave emitter results in amplitude and frequency modulation.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2022.116814</doi><orcidid>https://orcid.org/0000-0001-6588-7739</orcidid><orcidid>https://orcid.org/0000-0001-8765-3722</orcidid><orcidid>https://orcid.org/0000-0002-5399-4075</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2022-06, Vol.527, p.116814, Article 116814 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_journals_2663522235 |
source | Elsevier ScienceDirect Journals |
subjects | Acoustic attenuation Acoustic waves Acoustics Amplitude modulation Boundary conditions Coordinate transformations Distortion Doppler effect Elastic waves Explicit finite difference Finite difference time domain method Motion stability Moving boundary Nonlinear acoustics Nonlinear systems Nonlinearity Numerical stability Predictor-corrector methods Propagation Shock waves Surface waves Westervelt equation |
title | Explicit predictor–corrector method for nonlinear acoustic waves excited by a moving wave emitting boundary |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20predictor%E2%80%93corrector%20method%20for%20nonlinear%20acoustic%20waves%20excited%20by%20a%20moving%20wave%20emitting%20boundary&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Schenke,%20S%C3%B6ren&rft.date=2022-06-09&rft.volume=527&rft.spage=116814&rft.pages=116814-&rft.artnum=116814&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2022.116814&rft_dat=%3Cproquest_cross%3E2663522235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663522235&rft_id=info:pmid/&rft_els_id=S0022460X22000645&rfr_iscdi=true |