Artificial Intelligence for Nanostructured Materials

The current level of development of artificial intelligence (AI) technologies makes it possible to solve many complex problems just as well as a human does. Importance advances in AI are especially noticeable in machine learning, the methods and algorithms of which are successfully adapted and activ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanobiotechnology Reports (Online) 2022-02, Vol.17 (1), p.1-9
Hauptverfasser: Gadzhimagomedova, Z. M., Pashkov, D. M., Kirsanova, D. Yu, Soldatov, S. A., Butakova, M. A., Chernov, A. V., Soldatov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 1
container_title Nanobiotechnology Reports (Online)
container_volume 17
creator Gadzhimagomedova, Z. M.
Pashkov, D. M.
Kirsanova, D. Yu
Soldatov, S. A.
Butakova, M. A.
Chernov, A. V.
Soldatov, A. V.
description The current level of development of artificial intelligence (AI) technologies makes it possible to solve many complex problems just as well as a human does. Importance advances in AI are especially noticeable in machine learning, the methods and algorithms of which are successfully adapted and actively used to solve a wide range of problems, including those in the field of nanotechnology. In modern fields of nanotechnology, it is important to speed up the process of searching for the optimal synthesis parameters when creating new unique nanomaterials. The variety of approaches and techniques in both machine learning and nanotechnology makes it necessary to systematically review current data on the use of AI for solving problems in nanomaterials science at both the stage of computer design and of the chemical synthesis and diagnostics of the resulting nanomaterials. Particular attention is paid to the use of machine-learning technologies for studying the thermal and dynamic properties of nanofluids, the processes of sorption of nanocomposites, the catalytic activity of nanoparticles, and the toxicity of nanoparticles and for solving the problems of nanosensorics, as well as for processing the experimental data obtained during the diagnostics of various characteristics of nanomaterials.
doi_str_mv 10.1134/S2635167622010049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2663485405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663485405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-5e6f0ee21a1d46d069b4bc385d8d497ecf914342e03683a3bb1c8d9554e7afe33</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsNT-AHcB19E7r5vJshQfhaoLdR0mkzslpSZ1ZrLw35sS0YW4OofLd86Fw9glh2vOpbp5ESg1xwKFAA6gyhM2O55yjkad_vgCz9kixh0AiIKDAJwxtQyp9a1r7T5bd4n2-3ZLnaPM9yF7sl0fUxhcGgI12aNNFEYwXrAzPwotvnXO3u5uX1cP-eb5fr1abnIn0KRcE3ogEtzyRmEDWNaqdtLoxjSqLMj5kiupBIFEI62sa-5MU2qtqLCepJyzq6n3EPqPgWKqdv0QuvFlJRClMlqBHik-US70MQby1SG07zZ8Vhyq4z7Vn33GjJgycWS7LYXf5v9DX_0nZdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663485405</pqid></control><display><type>article</type><title>Artificial Intelligence for Nanostructured Materials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gadzhimagomedova, Z. M. ; Pashkov, D. M. ; Kirsanova, D. Yu ; Soldatov, S. A. ; Butakova, M. A. ; Chernov, A. V. ; Soldatov, A. V.</creator><creatorcontrib>Gadzhimagomedova, Z. M. ; Pashkov, D. M. ; Kirsanova, D. Yu ; Soldatov, S. A. ; Butakova, M. A. ; Chernov, A. V. ; Soldatov, A. V.</creatorcontrib><description>The current level of development of artificial intelligence (AI) technologies makes it possible to solve many complex problems just as well as a human does. Importance advances in AI are especially noticeable in machine learning, the methods and algorithms of which are successfully adapted and actively used to solve a wide range of problems, including those in the field of nanotechnology. In modern fields of nanotechnology, it is important to speed up the process of searching for the optimal synthesis parameters when creating new unique nanomaterials. The variety of approaches and techniques in both machine learning and nanotechnology makes it necessary to systematically review current data on the use of AI for solving problems in nanomaterials science at both the stage of computer design and of the chemical synthesis and diagnostics of the resulting nanomaterials. Particular attention is paid to the use of machine-learning technologies for studying the thermal and dynamic properties of nanofluids, the processes of sorption of nanocomposites, the catalytic activity of nanoparticles, and the toxicity of nanoparticles and for solving the problems of nanosensorics, as well as for processing the experimental data obtained during the diagnostics of various characteristics of nanomaterials.</description><identifier>ISSN: 2635-1676</identifier><identifier>ISSN: 1995-0780</identifier><identifier>EISSN: 2635-1684</identifier><identifier>EISSN: 1995-0799</identifier><identifier>DOI: 10.1134/S2635167622010049</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Artificial intelligence ; Catalytic activity ; Chemical synthesis ; Chemistry and Materials Science ; Computer design ; Industrial and Production Engineering ; Machine learning ; Machines ; Manufacturing ; Materials Science ; Nanocomposites ; Nanofluids ; Nanomaterials ; Nanoparticles ; Nanostructured materials ; Nanotechnology ; Problem solving ; Processes ; Reviews ; Toxicity</subject><ispartof>Nanobiotechnology Reports (Online), 2022-02, Vol.17 (1), p.1-9</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 2635-1676, Nanobiotechnology Reports, 2022, Vol. 17, No. 1, pp. 1–9. © Pleiades Publishing, Ltd., 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-5e6f0ee21a1d46d069b4bc385d8d497ecf914342e03683a3bb1c8d9554e7afe33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2635167622010049$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2635167622010049$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Gadzhimagomedova, Z. M.</creatorcontrib><creatorcontrib>Pashkov, D. M.</creatorcontrib><creatorcontrib>Kirsanova, D. Yu</creatorcontrib><creatorcontrib>Soldatov, S. A.</creatorcontrib><creatorcontrib>Butakova, M. A.</creatorcontrib><creatorcontrib>Chernov, A. V.</creatorcontrib><creatorcontrib>Soldatov, A. V.</creatorcontrib><title>Artificial Intelligence for Nanostructured Materials</title><title>Nanobiotechnology Reports (Online)</title><addtitle>Nanotechnol Russia</addtitle><description>The current level of development of artificial intelligence (AI) technologies makes it possible to solve many complex problems just as well as a human does. Importance advances in AI are especially noticeable in machine learning, the methods and algorithms of which are successfully adapted and actively used to solve a wide range of problems, including those in the field of nanotechnology. In modern fields of nanotechnology, it is important to speed up the process of searching for the optimal synthesis parameters when creating new unique nanomaterials. The variety of approaches and techniques in both machine learning and nanotechnology makes it necessary to systematically review current data on the use of AI for solving problems in nanomaterials science at both the stage of computer design and of the chemical synthesis and diagnostics of the resulting nanomaterials. Particular attention is paid to the use of machine-learning technologies for studying the thermal and dynamic properties of nanofluids, the processes of sorption of nanocomposites, the catalytic activity of nanoparticles, and the toxicity of nanoparticles and for solving the problems of nanosensorics, as well as for processing the experimental data obtained during the diagnostics of various characteristics of nanomaterials.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Catalytic activity</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Computer design</subject><subject>Industrial and Production Engineering</subject><subject>Machine learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructured materials</subject><subject>Nanotechnology</subject><subject>Problem solving</subject><subject>Processes</subject><subject>Reviews</subject><subject>Toxicity</subject><issn>2635-1676</issn><issn>1995-0780</issn><issn>2635-1684</issn><issn>1995-0799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsNT-AHcB19E7r5vJshQfhaoLdR0mkzslpSZ1ZrLw35sS0YW4OofLd86Fw9glh2vOpbp5ESg1xwKFAA6gyhM2O55yjkad_vgCz9kixh0AiIKDAJwxtQyp9a1r7T5bd4n2-3ZLnaPM9yF7sl0fUxhcGgI12aNNFEYwXrAzPwotvnXO3u5uX1cP-eb5fr1abnIn0KRcE3ogEtzyRmEDWNaqdtLoxjSqLMj5kiupBIFEI62sa-5MU2qtqLCepJyzq6n3EPqPgWKqdv0QuvFlJRClMlqBHik-US70MQby1SG07zZ8Vhyq4z7Vn33GjJgycWS7LYXf5v9DX_0nZdg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Gadzhimagomedova, Z. M.</creator><creator>Pashkov, D. M.</creator><creator>Kirsanova, D. Yu</creator><creator>Soldatov, S. A.</creator><creator>Butakova, M. A.</creator><creator>Chernov, A. V.</creator><creator>Soldatov, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>Artificial Intelligence for Nanostructured Materials</title><author>Gadzhimagomedova, Z. M. ; Pashkov, D. M. ; Kirsanova, D. Yu ; Soldatov, S. A. ; Butakova, M. A. ; Chernov, A. V. ; Soldatov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-5e6f0ee21a1d46d069b4bc385d8d497ecf914342e03683a3bb1c8d9554e7afe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Catalytic activity</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Computer design</topic><topic>Industrial and Production Engineering</topic><topic>Machine learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructured materials</topic><topic>Nanotechnology</topic><topic>Problem solving</topic><topic>Processes</topic><topic>Reviews</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gadzhimagomedova, Z. M.</creatorcontrib><creatorcontrib>Pashkov, D. M.</creatorcontrib><creatorcontrib>Kirsanova, D. Yu</creatorcontrib><creatorcontrib>Soldatov, S. A.</creatorcontrib><creatorcontrib>Butakova, M. A.</creatorcontrib><creatorcontrib>Chernov, A. V.</creatorcontrib><creatorcontrib>Soldatov, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Nanobiotechnology Reports (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gadzhimagomedova, Z. M.</au><au>Pashkov, D. M.</au><au>Kirsanova, D. Yu</au><au>Soldatov, S. A.</au><au>Butakova, M. A.</au><au>Chernov, A. V.</au><au>Soldatov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence for Nanostructured Materials</atitle><jtitle>Nanobiotechnology Reports (Online)</jtitle><stitle>Nanotechnol Russia</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>17</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2635-1676</issn><issn>1995-0780</issn><eissn>2635-1684</eissn><eissn>1995-0799</eissn><abstract>The current level of development of artificial intelligence (AI) technologies makes it possible to solve many complex problems just as well as a human does. Importance advances in AI are especially noticeable in machine learning, the methods and algorithms of which are successfully adapted and actively used to solve a wide range of problems, including those in the field of nanotechnology. In modern fields of nanotechnology, it is important to speed up the process of searching for the optimal synthesis parameters when creating new unique nanomaterials. The variety of approaches and techniques in both machine learning and nanotechnology makes it necessary to systematically review current data on the use of AI for solving problems in nanomaterials science at both the stage of computer design and of the chemical synthesis and diagnostics of the resulting nanomaterials. Particular attention is paid to the use of machine-learning technologies for studying the thermal and dynamic properties of nanofluids, the processes of sorption of nanocomposites, the catalytic activity of nanoparticles, and the toxicity of nanoparticles and for solving the problems of nanosensorics, as well as for processing the experimental data obtained during the diagnostics of various characteristics of nanomaterials.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2635167622010049</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2635-1676
ispartof Nanobiotechnology Reports (Online), 2022-02, Vol.17 (1), p.1-9
issn 2635-1676
1995-0780
2635-1684
1995-0799
language eng
recordid cdi_proquest_journals_2663485405
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial intelligence
Catalytic activity
Chemical synthesis
Chemistry and Materials Science
Computer design
Industrial and Production Engineering
Machine learning
Machines
Manufacturing
Materials Science
Nanocomposites
Nanofluids
Nanomaterials
Nanoparticles
Nanostructured materials
Nanotechnology
Problem solving
Processes
Reviews
Toxicity
title Artificial Intelligence for Nanostructured Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20for%20Nanostructured%20Materials&rft.jtitle=Nanobiotechnology%20Reports%20(Online)&rft.au=Gadzhimagomedova,%20Z.%20M.&rft.date=2022-02-01&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2635-1676&rft.eissn=2635-1684&rft_id=info:doi/10.1134/S2635167622010049&rft_dat=%3Cproquest_cross%3E2663485405%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663485405&rft_id=info:pmid/&rfr_iscdi=true