A machine learning method to predict the technology adoption of blockchain in Palestinian firms

PurposeThe study aims to deliver a decision support system for business leaders to estimate the potential for effective technological adoption of the blockchain (TAB) with a machine learning approach.Design/methodology/approachThis study uses a Bayesian network examination to develop an extrapolativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of emerging markets 2022-05, Vol.17 (4), p.1008-1029
Hauptverfasser: Hamdan, Ihab K.A., Sumarliah, Eli, Fauziyah, Fauziyah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PurposeThe study aims to deliver a decision support system for business leaders to estimate the potential for effective technological adoption of the blockchain (TAB) with a machine learning approach.Design/methodology/approachThis study uses a Bayesian network examination to develop an extrapolative system of decision support, highlighting the influential determinants that managers can employ to predict the TAB possibilities in their companies. Data were gathered from 167 SMEs in the largest industrial sectors in Palestine.FindingsThe results reveal perceived benefit and ease of use as the most influential determinants of the TAB.Originality/valueThis research is an initial effort to examine factors influencing TAB in the perspective of SMEs in Palestine using machine learning algorithms.
ISSN:1746-8809
1746-8817
DOI:10.1108/IJOEM-05-2021-0769