Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression
Although the number of cyclist crashes is decreasing in Japan, the fatality rate is not. Thus, reducing their severity is a major challenge. We used a polytomous latent class analysis to understand their characteristics and bias-reduced logistic regression to analyze their severity. Specifically, 90...
Gespeichert in:
Veröffentlicht in: | Sustainability 2022-05, Vol.14 (9), p.5497 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 5497 |
container_title | Sustainability |
container_volume | 14 |
creator | Sekiguchi, Yuta Tanishita, Masayoshi Sunaga, Daisuke |
description | Although the number of cyclist crashes is decreasing in Japan, the fatality rate is not. Thus, reducing their severity is a major challenge. We used a polytomous latent class analysis to understand their characteristics and bias-reduced logistic regression to analyze their severity. Specifically, 90,696 combinations and 139,955 cyclist accidents were divided into 17 classes. The variable contributing the most to the classification was the crash location. Common fatality risks included older age groups and rural areas, whereas other factors differed among crash locations. Median strips, stop signs, and boundaries between the sidewalk and roadway affected the severity of crashes at intersections. Moreover, the existence of a median strip, collision partner, and time period affected the severity of crashes between intersections. On the sidewalks, the fatality risk was higher when the front part of the bicycle was subjected to the collision. |
doi_str_mv | 10.3390/su14095497 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2663116164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663116164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1407-7c8b21d34233463b81890d18f235f9a4b3c1b857ef5b6fd49a7c4557f5bdb7d03</originalsourceid><addsrcrecordid>eNpNUE1LxDAUDKLgsu7FXxDwJlSTJmna41r8goKyuOeS5qObpdusee2h_97qCvou84YZhvcGoWtK7hgryD2MlJNC8EKeoUVKJE0oEeT8336JVgB7Mg9jtKDZAvXlTkWlBxs9DF4DDg6Xk-5mhsuoYGcBb8H3LX4P3TSEQxgBV2qw_ax3CgCve9VN4AGr3uAHryDZWDNqa3AV2p9QvLFttAA-9FfowqkO7OoXl2j79PhRviTV2_Nrua4SPb8gE6nzJqWG8ZQxnrEmp3lBDM1dyoQrFG-Ypk0upHWiyZzhhZKaCyFnahppCFuim1PuMYbP0cJQ78MY50uhTrOMUZrRjM-u25NLxwAQrauP0R9UnGpK6u9K679K2Rcu-Gkt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663116164</pqid></control><display><type>article</type><title>Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Sekiguchi, Yuta ; Tanishita, Masayoshi ; Sunaga, Daisuke</creator><creatorcontrib>Sekiguchi, Yuta ; Tanishita, Masayoshi ; Sunaga, Daisuke</creatorcontrib><description>Although the number of cyclist crashes is decreasing in Japan, the fatality rate is not. Thus, reducing their severity is a major challenge. We used a polytomous latent class analysis to understand their characteristics and bias-reduced logistic regression to analyze their severity. Specifically, 90,696 combinations and 139,955 cyclist accidents were divided into 17 classes. The variable contributing the most to the classification was the crash location. Common fatality risks included older age groups and rural areas, whereas other factors differed among crash locations. Median strips, stop signs, and boundaries between the sidewalk and roadway affected the severity of crashes at intersections. Moreover, the existence of a median strip, collision partner, and time period affected the severity of crashes between intersections. On the sidewalks, the fatality risk was higher when the front part of the bicycle was subjected to the collision.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14095497</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alcohol ; Automobile drivers ; Bias ; Bicycles ; Bicycling ; Datasets ; Fatalities ; Infrastructure ; Injuries ; Intersections ; Latent class analysis ; Machine learning ; Regression analysis ; Roads & highways ; Rural areas ; Sustainability ; Traffic signs ; Vehicles ; Walkways</subject><ispartof>Sustainability, 2022-05, Vol.14 (9), p.5497</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1407-7c8b21d34233463b81890d18f235f9a4b3c1b857ef5b6fd49a7c4557f5bdb7d03</citedby><cites>FETCH-LOGICAL-c1407-7c8b21d34233463b81890d18f235f9a4b3c1b857ef5b6fd49a7c4557f5bdb7d03</cites><orcidid>0000-0003-0330-8265 ; 0000-0001-9767-8923 ; 0000-0002-7178-2359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sekiguchi, Yuta</creatorcontrib><creatorcontrib>Tanishita, Masayoshi</creatorcontrib><creatorcontrib>Sunaga, Daisuke</creatorcontrib><title>Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression</title><title>Sustainability</title><description>Although the number of cyclist crashes is decreasing in Japan, the fatality rate is not. Thus, reducing their severity is a major challenge. We used a polytomous latent class analysis to understand their characteristics and bias-reduced logistic regression to analyze their severity. Specifically, 90,696 combinations and 139,955 cyclist accidents were divided into 17 classes. The variable contributing the most to the classification was the crash location. Common fatality risks included older age groups and rural areas, whereas other factors differed among crash locations. Median strips, stop signs, and boundaries between the sidewalk and roadway affected the severity of crashes at intersections. Moreover, the existence of a median strip, collision partner, and time period affected the severity of crashes between intersections. On the sidewalks, the fatality risk was higher when the front part of the bicycle was subjected to the collision.</description><subject>Alcohol</subject><subject>Automobile drivers</subject><subject>Bias</subject><subject>Bicycles</subject><subject>Bicycling</subject><subject>Datasets</subject><subject>Fatalities</subject><subject>Infrastructure</subject><subject>Injuries</subject><subject>Intersections</subject><subject>Latent class analysis</subject><subject>Machine learning</subject><subject>Regression analysis</subject><subject>Roads & highways</subject><subject>Rural areas</subject><subject>Sustainability</subject><subject>Traffic signs</subject><subject>Vehicles</subject><subject>Walkways</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUE1LxDAUDKLgsu7FXxDwJlSTJmna41r8goKyuOeS5qObpdusee2h_97qCvou84YZhvcGoWtK7hgryD2MlJNC8EKeoUVKJE0oEeT8336JVgB7Mg9jtKDZAvXlTkWlBxs9DF4DDg6Xk-5mhsuoYGcBb8H3LX4P3TSEQxgBV2qw_ax3CgCve9VN4AGr3uAHryDZWDNqa3AV2p9QvLFttAA-9FfowqkO7OoXl2j79PhRviTV2_Nrua4SPb8gE6nzJqWG8ZQxnrEmp3lBDM1dyoQrFG-Ypk0upHWiyZzhhZKaCyFnahppCFuim1PuMYbP0cJQ78MY50uhTrOMUZrRjM-u25NLxwAQrauP0R9UnGpK6u9K679K2Rcu-Gkt</recordid><startdate>20220503</startdate><enddate>20220503</enddate><creator>Sekiguchi, Yuta</creator><creator>Tanishita, Masayoshi</creator><creator>Sunaga, Daisuke</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0330-8265</orcidid><orcidid>https://orcid.org/0000-0001-9767-8923</orcidid><orcidid>https://orcid.org/0000-0002-7178-2359</orcidid></search><sort><creationdate>20220503</creationdate><title>Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression</title><author>Sekiguchi, Yuta ; Tanishita, Masayoshi ; Sunaga, Daisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1407-7c8b21d34233463b81890d18f235f9a4b3c1b857ef5b6fd49a7c4557f5bdb7d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alcohol</topic><topic>Automobile drivers</topic><topic>Bias</topic><topic>Bicycles</topic><topic>Bicycling</topic><topic>Datasets</topic><topic>Fatalities</topic><topic>Infrastructure</topic><topic>Injuries</topic><topic>Intersections</topic><topic>Latent class analysis</topic><topic>Machine learning</topic><topic>Regression analysis</topic><topic>Roads & highways</topic><topic>Rural areas</topic><topic>Sustainability</topic><topic>Traffic signs</topic><topic>Vehicles</topic><topic>Walkways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekiguchi, Yuta</creatorcontrib><creatorcontrib>Tanishita, Masayoshi</creatorcontrib><creatorcontrib>Sunaga, Daisuke</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekiguchi, Yuta</au><au>Tanishita, Masayoshi</au><au>Sunaga, Daisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression</atitle><jtitle>Sustainability</jtitle><date>2022-05-03</date><risdate>2022</risdate><volume>14</volume><issue>9</issue><spage>5497</spage><pages>5497-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Although the number of cyclist crashes is decreasing in Japan, the fatality rate is not. Thus, reducing their severity is a major challenge. We used a polytomous latent class analysis to understand their characteristics and bias-reduced logistic regression to analyze their severity. Specifically, 90,696 combinations and 139,955 cyclist accidents were divided into 17 classes. The variable contributing the most to the classification was the crash location. Common fatality risks included older age groups and rural areas, whereas other factors differed among crash locations. Median strips, stop signs, and boundaries between the sidewalk and roadway affected the severity of crashes at intersections. Moreover, the existence of a median strip, collision partner, and time period affected the severity of crashes between intersections. On the sidewalks, the fatality risk was higher when the front part of the bicycle was subjected to the collision.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14095497</doi><orcidid>https://orcid.org/0000-0003-0330-8265</orcidid><orcidid>https://orcid.org/0000-0001-9767-8923</orcidid><orcidid>https://orcid.org/0000-0002-7178-2359</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2022-05, Vol.14 (9), p.5497 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2663116164 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Alcohol Automobile drivers Bias Bicycles Bicycling Datasets Fatalities Infrastructure Injuries Intersections Latent class analysis Machine learning Regression analysis Roads & highways Rural areas Sustainability Traffic signs Vehicles Walkways |
title | Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20of%20Cyclist%20Crashes%20Using%20Polytomous%20Latent%20Class%20Analysis%20and%20Bias-Reduced%20Logistic%20Regression&rft.jtitle=Sustainability&rft.au=Sekiguchi,%20Yuta&rft.date=2022-05-03&rft.volume=14&rft.issue=9&rft.spage=5497&rft.pages=5497-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14095497&rft_dat=%3Cproquest_cross%3E2663116164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663116164&rft_id=info:pmid/&rfr_iscdi=true |