Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression

Although the number of cyclist crashes is decreasing in Japan, the fatality rate is not. Thus, reducing their severity is a major challenge. We used a polytomous latent class analysis to understand their characteristics and bias-reduced logistic regression to analyze their severity. Specifically, 90...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-05, Vol.14 (9), p.5497
Hauptverfasser: Sekiguchi, Yuta, Tanishita, Masayoshi, Sunaga, Daisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 5497
container_title Sustainability
container_volume 14
creator Sekiguchi, Yuta
Tanishita, Masayoshi
Sunaga, Daisuke
description Although the number of cyclist crashes is decreasing in Japan, the fatality rate is not. Thus, reducing their severity is a major challenge. We used a polytomous latent class analysis to understand their characteristics and bias-reduced logistic regression to analyze their severity. Specifically, 90,696 combinations and 139,955 cyclist accidents were divided into 17 classes. The variable contributing the most to the classification was the crash location. Common fatality risks included older age groups and rural areas, whereas other factors differed among crash locations. Median strips, stop signs, and boundaries between the sidewalk and roadway affected the severity of crashes at intersections. Moreover, the existence of a median strip, collision partner, and time period affected the severity of crashes between intersections. On the sidewalks, the fatality risk was higher when the front part of the bicycle was subjected to the collision.
doi_str_mv 10.3390/su14095497
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2663116164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663116164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1407-7c8b21d34233463b81890d18f235f9a4b3c1b857ef5b6fd49a7c4557f5bdb7d03</originalsourceid><addsrcrecordid>eNpNUE1LxDAUDKLgsu7FXxDwJlSTJmna41r8goKyuOeS5qObpdusee2h_97qCvou84YZhvcGoWtK7hgryD2MlJNC8EKeoUVKJE0oEeT8336JVgB7Mg9jtKDZAvXlTkWlBxs9DF4DDg6Xk-5mhsuoYGcBb8H3LX4P3TSEQxgBV2qw_ax3CgCve9VN4AGr3uAHryDZWDNqa3AV2p9QvLFttAA-9FfowqkO7OoXl2j79PhRviTV2_Nrua4SPb8gE6nzJqWG8ZQxnrEmp3lBDM1dyoQrFG-Ypk0upHWiyZzhhZKaCyFnahppCFuim1PuMYbP0cJQ78MY50uhTrOMUZrRjM-u25NLxwAQrauP0R9UnGpK6u9K679K2Rcu-Gkt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663116164</pqid></control><display><type>article</type><title>Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Sekiguchi, Yuta ; Tanishita, Masayoshi ; Sunaga, Daisuke</creator><creatorcontrib>Sekiguchi, Yuta ; Tanishita, Masayoshi ; Sunaga, Daisuke</creatorcontrib><description>Although the number of cyclist crashes is decreasing in Japan, the fatality rate is not. Thus, reducing their severity is a major challenge. We used a polytomous latent class analysis to understand their characteristics and bias-reduced logistic regression to analyze their severity. Specifically, 90,696 combinations and 139,955 cyclist accidents were divided into 17 classes. The variable contributing the most to the classification was the crash location. Common fatality risks included older age groups and rural areas, whereas other factors differed among crash locations. Median strips, stop signs, and boundaries between the sidewalk and roadway affected the severity of crashes at intersections. Moreover, the existence of a median strip, collision partner, and time period affected the severity of crashes between intersections. On the sidewalks, the fatality risk was higher when the front part of the bicycle was subjected to the collision.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14095497</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alcohol ; Automobile drivers ; Bias ; Bicycles ; Bicycling ; Datasets ; Fatalities ; Infrastructure ; Injuries ; Intersections ; Latent class analysis ; Machine learning ; Regression analysis ; Roads &amp; highways ; Rural areas ; Sustainability ; Traffic signs ; Vehicles ; Walkways</subject><ispartof>Sustainability, 2022-05, Vol.14 (9), p.5497</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1407-7c8b21d34233463b81890d18f235f9a4b3c1b857ef5b6fd49a7c4557f5bdb7d03</citedby><cites>FETCH-LOGICAL-c1407-7c8b21d34233463b81890d18f235f9a4b3c1b857ef5b6fd49a7c4557f5bdb7d03</cites><orcidid>0000-0003-0330-8265 ; 0000-0001-9767-8923 ; 0000-0002-7178-2359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sekiguchi, Yuta</creatorcontrib><creatorcontrib>Tanishita, Masayoshi</creatorcontrib><creatorcontrib>Sunaga, Daisuke</creatorcontrib><title>Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression</title><title>Sustainability</title><description>Although the number of cyclist crashes is decreasing in Japan, the fatality rate is not. Thus, reducing their severity is a major challenge. We used a polytomous latent class analysis to understand their characteristics and bias-reduced logistic regression to analyze their severity. Specifically, 90,696 combinations and 139,955 cyclist accidents were divided into 17 classes. The variable contributing the most to the classification was the crash location. Common fatality risks included older age groups and rural areas, whereas other factors differed among crash locations. Median strips, stop signs, and boundaries between the sidewalk and roadway affected the severity of crashes at intersections. Moreover, the existence of a median strip, collision partner, and time period affected the severity of crashes between intersections. On the sidewalks, the fatality risk was higher when the front part of the bicycle was subjected to the collision.</description><subject>Alcohol</subject><subject>Automobile drivers</subject><subject>Bias</subject><subject>Bicycles</subject><subject>Bicycling</subject><subject>Datasets</subject><subject>Fatalities</subject><subject>Infrastructure</subject><subject>Injuries</subject><subject>Intersections</subject><subject>Latent class analysis</subject><subject>Machine learning</subject><subject>Regression analysis</subject><subject>Roads &amp; highways</subject><subject>Rural areas</subject><subject>Sustainability</subject><subject>Traffic signs</subject><subject>Vehicles</subject><subject>Walkways</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUE1LxDAUDKLgsu7FXxDwJlSTJmna41r8goKyuOeS5qObpdusee2h_97qCvou84YZhvcGoWtK7hgryD2MlJNC8EKeoUVKJE0oEeT8336JVgB7Mg9jtKDZAvXlTkWlBxs9DF4DDg6Xk-5mhsuoYGcBb8H3LX4P3TSEQxgBV2qw_ax3CgCve9VN4AGr3uAHryDZWDNqa3AV2p9QvLFttAA-9FfowqkO7OoXl2j79PhRviTV2_Nrua4SPb8gE6nzJqWG8ZQxnrEmp3lBDM1dyoQrFG-Ypk0upHWiyZzhhZKaCyFnahppCFuim1PuMYbP0cJQ78MY50uhTrOMUZrRjM-u25NLxwAQrauP0R9UnGpK6u9K679K2Rcu-Gkt</recordid><startdate>20220503</startdate><enddate>20220503</enddate><creator>Sekiguchi, Yuta</creator><creator>Tanishita, Masayoshi</creator><creator>Sunaga, Daisuke</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0330-8265</orcidid><orcidid>https://orcid.org/0000-0001-9767-8923</orcidid><orcidid>https://orcid.org/0000-0002-7178-2359</orcidid></search><sort><creationdate>20220503</creationdate><title>Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression</title><author>Sekiguchi, Yuta ; Tanishita, Masayoshi ; Sunaga, Daisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1407-7c8b21d34233463b81890d18f235f9a4b3c1b857ef5b6fd49a7c4557f5bdb7d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alcohol</topic><topic>Automobile drivers</topic><topic>Bias</topic><topic>Bicycles</topic><topic>Bicycling</topic><topic>Datasets</topic><topic>Fatalities</topic><topic>Infrastructure</topic><topic>Injuries</topic><topic>Intersections</topic><topic>Latent class analysis</topic><topic>Machine learning</topic><topic>Regression analysis</topic><topic>Roads &amp; highways</topic><topic>Rural areas</topic><topic>Sustainability</topic><topic>Traffic signs</topic><topic>Vehicles</topic><topic>Walkways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekiguchi, Yuta</creatorcontrib><creatorcontrib>Tanishita, Masayoshi</creatorcontrib><creatorcontrib>Sunaga, Daisuke</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekiguchi, Yuta</au><au>Tanishita, Masayoshi</au><au>Sunaga, Daisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression</atitle><jtitle>Sustainability</jtitle><date>2022-05-03</date><risdate>2022</risdate><volume>14</volume><issue>9</issue><spage>5497</spage><pages>5497-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Although the number of cyclist crashes is decreasing in Japan, the fatality rate is not. Thus, reducing their severity is a major challenge. We used a polytomous latent class analysis to understand their characteristics and bias-reduced logistic regression to analyze their severity. Specifically, 90,696 combinations and 139,955 cyclist accidents were divided into 17 classes. The variable contributing the most to the classification was the crash location. Common fatality risks included older age groups and rural areas, whereas other factors differed among crash locations. Median strips, stop signs, and boundaries between the sidewalk and roadway affected the severity of crashes at intersections. Moreover, the existence of a median strip, collision partner, and time period affected the severity of crashes between intersections. On the sidewalks, the fatality risk was higher when the front part of the bicycle was subjected to the collision.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14095497</doi><orcidid>https://orcid.org/0000-0003-0330-8265</orcidid><orcidid>https://orcid.org/0000-0001-9767-8923</orcidid><orcidid>https://orcid.org/0000-0002-7178-2359</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-05, Vol.14 (9), p.5497
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2663116164
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Alcohol
Automobile drivers
Bias
Bicycles
Bicycling
Datasets
Fatalities
Infrastructure
Injuries
Intersections
Latent class analysis
Machine learning
Regression analysis
Roads & highways
Rural areas
Sustainability
Traffic signs
Vehicles
Walkways
title Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20of%20Cyclist%20Crashes%20Using%20Polytomous%20Latent%20Class%20Analysis%20and%20Bias-Reduced%20Logistic%20Regression&rft.jtitle=Sustainability&rft.au=Sekiguchi,%20Yuta&rft.date=2022-05-03&rft.volume=14&rft.issue=9&rft.spage=5497&rft.pages=5497-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14095497&rft_dat=%3Cproquest_cross%3E2663116164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663116164&rft_id=info:pmid/&rfr_iscdi=true