Mid-Infrared Reflectance Spectroscopy for Estimation of Soil Properties of Alfisols from Eastern India
Mid-infrared (MIR) spectroscopy is emerging as one of the most promising technologies, as it is a rapid and cost-effective alternative to routine laboratory analysis for many soil properties. This study was conducted to evaluate the potential of mid-infrared spectroscopy for the rapid and nondestruc...
Gespeichert in:
Veröffentlicht in: | Sustainability 2022-05, Vol.14 (9), p.4883 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 4883 |
container_title | Sustainability |
container_volume | 14 |
creator | Hati, Kuntal M. Sinha, Nishant K. Mohanty, Monoranjan Jha, Pramod Londhe, Sunil Sila, Andrew Towett, Erick Chaudhary, Ranjeet S. Jayaraman, Somasundaram Vassanda Coumar, Mounisamy Thakur, Jyoti K. Dey, Pradip Shepherd, Keith Muchhala, Pankaj Weullow, Elvis Singh, Muneshwar Dhyani, Shiv K. Biradar, Chandrashekhar Rizvi, Javed Patra, Ashok K. Chaudhari, Suresh K. |
description | Mid-infrared (MIR) spectroscopy is emerging as one of the most promising technologies, as it is a rapid and cost-effective alternative to routine laboratory analysis for many soil properties. This study was conducted to evaluate the potential of mid-infrared spectroscopy for the rapid and nondestructive measurement of some important soil properties of Alfisols. A total of 336 georeferenced soil samples fromthe 0–15 cm soil layer of Alfisols that were collected from the eastern Indian states of Odisha and Jharkhand were used. The partial least-squares regression (PLSR), random forest, and support vector machine regression techniques were compared for the calibration of the spectral data with the wet chemistry soil data. The PLSR-based predictive models performed better than the other two regression techniques for all the soil properties, except for the electrical conductivity (EC). Good predictions with independent validation datasets were obtained for the clay and sand percentages and for the soil organic carbon (SOC) content, while satisfactory predictions were achieved for the silt percentage and the pH value. However, the performance of the predictive models was poor in the case of the EC and the extractable nutrients, such as the available phosphorus and potassium contents of the soil. Specific regions of the MIR spectra that contributed to the prediction of the soil SOC, the pH, and the clay and sand percentages were identified. The study demonstrates the potential of the MIR spectroscopic technique in the simultaneous estimation of the SOC content, the sand, clay, and silt percentages, and the pH of Alfisols from eastern India. |
doi_str_mv | 10.3390/su14094883 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2663113015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663113015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-6321c1968fe00c23abda74fd319f7ecd96ff7bb8dcc05834c98f6ecbb37c11563</originalsourceid><addsrcrecordid>eNpNUNFKwzAUDaLgmHvxCwK-CdXcpk2bxzGmDiaK0-eSJrnQ0TU1SR_292ZM0PtyD4fDveccQm6BPXAu2WOYoGCyqGt-QWY5qyADVrLLf_iaLELYszScgwQxI_jamWwzoFfeGvphsbc6qkFbuhsT8i5oNx4pOk_XIXYHFTs3UId057qevns3Wh87G07UsscuuD5Q9O5A1ypE6we6GUynbsgVqj7Yxe-ek6-n9efqJdu-PW9Wy22mc1nGTPAcNEhRo2VM51y1RlUFmmQWK6uNFIhV29ZGa1bWvNCyRmF12_JKA5SCz8nd-e7o3fdkQ2z2bvJDetnkQnAAzqBMqvuzSqd8wVtsRp-i-WMDrDlV2fxVyX8A045nJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663113015</pqid></control><display><type>article</type><title>Mid-Infrared Reflectance Spectroscopy for Estimation of Soil Properties of Alfisols from Eastern India</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hati, Kuntal M. ; Sinha, Nishant K. ; Mohanty, Monoranjan ; Jha, Pramod ; Londhe, Sunil ; Sila, Andrew ; Towett, Erick ; Chaudhary, Ranjeet S. ; Jayaraman, Somasundaram ; Vassanda Coumar, Mounisamy ; Thakur, Jyoti K. ; Dey, Pradip ; Shepherd, Keith ; Muchhala, Pankaj ; Weullow, Elvis ; Singh, Muneshwar ; Dhyani, Shiv K. ; Biradar, Chandrashekhar ; Rizvi, Javed ; Patra, Ashok K. ; Chaudhari, Suresh K.</creator><creatorcontrib>Hati, Kuntal M. ; Sinha, Nishant K. ; Mohanty, Monoranjan ; Jha, Pramod ; Londhe, Sunil ; Sila, Andrew ; Towett, Erick ; Chaudhary, Ranjeet S. ; Jayaraman, Somasundaram ; Vassanda Coumar, Mounisamy ; Thakur, Jyoti K. ; Dey, Pradip ; Shepherd, Keith ; Muchhala, Pankaj ; Weullow, Elvis ; Singh, Muneshwar ; Dhyani, Shiv K. ; Biradar, Chandrashekhar ; Rizvi, Javed ; Patra, Ashok K. ; Chaudhari, Suresh K.</creatorcontrib><description>Mid-infrared (MIR) spectroscopy is emerging as one of the most promising technologies, as it is a rapid and cost-effective alternative to routine laboratory analysis for many soil properties. This study was conducted to evaluate the potential of mid-infrared spectroscopy for the rapid and nondestructive measurement of some important soil properties of Alfisols. A total of 336 georeferenced soil samples fromthe 0–15 cm soil layer of Alfisols that were collected from the eastern Indian states of Odisha and Jharkhand were used. The partial least-squares regression (PLSR), random forest, and support vector machine regression techniques were compared for the calibration of the spectral data with the wet chemistry soil data. The PLSR-based predictive models performed better than the other two regression techniques for all the soil properties, except for the electrical conductivity (EC). Good predictions with independent validation datasets were obtained for the clay and sand percentages and for the soil organic carbon (SOC) content, while satisfactory predictions were achieved for the silt percentage and the pH value. However, the performance of the predictive models was poor in the case of the EC and the extractable nutrients, such as the available phosphorus and potassium contents of the soil. Specific regions of the MIR spectra that contributed to the prediction of the soil SOC, the pH, and the clay and sand percentages were identified. The study demonstrates the potential of the MIR spectroscopic technique in the simultaneous estimation of the SOC content, the sand, clay, and silt percentages, and the pH of Alfisols from eastern India.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14094883</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Agricultural production ; Calibration ; Carbon ; Clay ; Contamination ; Electrical conductivity ; Electrical resistivity ; Infrared reflection ; Infrared spectra ; Infrared spectroscopy ; Laboratories ; Least squares method ; Minerals ; Nutrient availability ; Nutrients ; Organic carbon ; Organic soils ; Phosphorus ; Potassium ; Prediction models ; Productivity ; Sand ; Silt ; Soil fertility ; Soil layers ; Soil properties ; Support vector machines ; Sustainability</subject><ispartof>Sustainability, 2022-05, Vol.14 (9), p.4883</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-6321c1968fe00c23abda74fd319f7ecd96ff7bb8dcc05834c98f6ecbb37c11563</citedby><cites>FETCH-LOGICAL-c295t-6321c1968fe00c23abda74fd319f7ecd96ff7bb8dcc05834c98f6ecbb37c11563</cites><orcidid>0000-0002-9161-4707 ; 0000-0002-9532-9452 ; 0000-0002-3991-8770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hati, Kuntal M.</creatorcontrib><creatorcontrib>Sinha, Nishant K.</creatorcontrib><creatorcontrib>Mohanty, Monoranjan</creatorcontrib><creatorcontrib>Jha, Pramod</creatorcontrib><creatorcontrib>Londhe, Sunil</creatorcontrib><creatorcontrib>Sila, Andrew</creatorcontrib><creatorcontrib>Towett, Erick</creatorcontrib><creatorcontrib>Chaudhary, Ranjeet S.</creatorcontrib><creatorcontrib>Jayaraman, Somasundaram</creatorcontrib><creatorcontrib>Vassanda Coumar, Mounisamy</creatorcontrib><creatorcontrib>Thakur, Jyoti K.</creatorcontrib><creatorcontrib>Dey, Pradip</creatorcontrib><creatorcontrib>Shepherd, Keith</creatorcontrib><creatorcontrib>Muchhala, Pankaj</creatorcontrib><creatorcontrib>Weullow, Elvis</creatorcontrib><creatorcontrib>Singh, Muneshwar</creatorcontrib><creatorcontrib>Dhyani, Shiv K.</creatorcontrib><creatorcontrib>Biradar, Chandrashekhar</creatorcontrib><creatorcontrib>Rizvi, Javed</creatorcontrib><creatorcontrib>Patra, Ashok K.</creatorcontrib><creatorcontrib>Chaudhari, Suresh K.</creatorcontrib><title>Mid-Infrared Reflectance Spectroscopy for Estimation of Soil Properties of Alfisols from Eastern India</title><title>Sustainability</title><description>Mid-infrared (MIR) spectroscopy is emerging as one of the most promising technologies, as it is a rapid and cost-effective alternative to routine laboratory analysis for many soil properties. This study was conducted to evaluate the potential of mid-infrared spectroscopy for the rapid and nondestructive measurement of some important soil properties of Alfisols. A total of 336 georeferenced soil samples fromthe 0–15 cm soil layer of Alfisols that were collected from the eastern Indian states of Odisha and Jharkhand were used. The partial least-squares regression (PLSR), random forest, and support vector machine regression techniques were compared for the calibration of the spectral data with the wet chemistry soil data. The PLSR-based predictive models performed better than the other two regression techniques for all the soil properties, except for the electrical conductivity (EC). Good predictions with independent validation datasets were obtained for the clay and sand percentages and for the soil organic carbon (SOC) content, while satisfactory predictions were achieved for the silt percentage and the pH value. However, the performance of the predictive models was poor in the case of the EC and the extractable nutrients, such as the available phosphorus and potassium contents of the soil. Specific regions of the MIR spectra that contributed to the prediction of the soil SOC, the pH, and the clay and sand percentages were identified. The study demonstrates the potential of the MIR spectroscopic technique in the simultaneous estimation of the SOC content, the sand, clay, and silt percentages, and the pH of Alfisols from eastern India.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>Calibration</subject><subject>Carbon</subject><subject>Clay</subject><subject>Contamination</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Infrared reflection</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Laboratories</subject><subject>Least squares method</subject><subject>Minerals</subject><subject>Nutrient availability</subject><subject>Nutrients</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Phosphorus</subject><subject>Potassium</subject><subject>Prediction models</subject><subject>Productivity</subject><subject>Sand</subject><subject>Silt</subject><subject>Soil fertility</subject><subject>Soil layers</subject><subject>Soil properties</subject><subject>Support vector machines</subject><subject>Sustainability</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUNFKwzAUDaLgmHvxCwK-CdXcpk2bxzGmDiaK0-eSJrnQ0TU1SR_292ZM0PtyD4fDveccQm6BPXAu2WOYoGCyqGt-QWY5qyADVrLLf_iaLELYszScgwQxI_jamWwzoFfeGvphsbc6qkFbuhsT8i5oNx4pOk_XIXYHFTs3UId057qevns3Wh87G07UsscuuD5Q9O5A1ypE6we6GUynbsgVqj7Yxe-ek6-n9efqJdu-PW9Wy22mc1nGTPAcNEhRo2VM51y1RlUFmmQWK6uNFIhV29ZGa1bWvNCyRmF12_JKA5SCz8nd-e7o3fdkQ2z2bvJDetnkQnAAzqBMqvuzSqd8wVtsRp-i-WMDrDlV2fxVyX8A045nJA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Hati, Kuntal M.</creator><creator>Sinha, Nishant K.</creator><creator>Mohanty, Monoranjan</creator><creator>Jha, Pramod</creator><creator>Londhe, Sunil</creator><creator>Sila, Andrew</creator><creator>Towett, Erick</creator><creator>Chaudhary, Ranjeet S.</creator><creator>Jayaraman, Somasundaram</creator><creator>Vassanda Coumar, Mounisamy</creator><creator>Thakur, Jyoti K.</creator><creator>Dey, Pradip</creator><creator>Shepherd, Keith</creator><creator>Muchhala, Pankaj</creator><creator>Weullow, Elvis</creator><creator>Singh, Muneshwar</creator><creator>Dhyani, Shiv K.</creator><creator>Biradar, Chandrashekhar</creator><creator>Rizvi, Javed</creator><creator>Patra, Ashok K.</creator><creator>Chaudhari, Suresh K.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9161-4707</orcidid><orcidid>https://orcid.org/0000-0002-9532-9452</orcidid><orcidid>https://orcid.org/0000-0002-3991-8770</orcidid></search><sort><creationdate>20220501</creationdate><title>Mid-Infrared Reflectance Spectroscopy for Estimation of Soil Properties of Alfisols from Eastern India</title><author>Hati, Kuntal M. ; Sinha, Nishant K. ; Mohanty, Monoranjan ; Jha, Pramod ; Londhe, Sunil ; Sila, Andrew ; Towett, Erick ; Chaudhary, Ranjeet S. ; Jayaraman, Somasundaram ; Vassanda Coumar, Mounisamy ; Thakur, Jyoti K. ; Dey, Pradip ; Shepherd, Keith ; Muchhala, Pankaj ; Weullow, Elvis ; Singh, Muneshwar ; Dhyani, Shiv K. ; Biradar, Chandrashekhar ; Rizvi, Javed ; Patra, Ashok K. ; Chaudhari, Suresh K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-6321c1968fe00c23abda74fd319f7ecd96ff7bb8dcc05834c98f6ecbb37c11563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>Calibration</topic><topic>Carbon</topic><topic>Clay</topic><topic>Contamination</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Infrared reflection</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Laboratories</topic><topic>Least squares method</topic><topic>Minerals</topic><topic>Nutrient availability</topic><topic>Nutrients</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Phosphorus</topic><topic>Potassium</topic><topic>Prediction models</topic><topic>Productivity</topic><topic>Sand</topic><topic>Silt</topic><topic>Soil fertility</topic><topic>Soil layers</topic><topic>Soil properties</topic><topic>Support vector machines</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hati, Kuntal M.</creatorcontrib><creatorcontrib>Sinha, Nishant K.</creatorcontrib><creatorcontrib>Mohanty, Monoranjan</creatorcontrib><creatorcontrib>Jha, Pramod</creatorcontrib><creatorcontrib>Londhe, Sunil</creatorcontrib><creatorcontrib>Sila, Andrew</creatorcontrib><creatorcontrib>Towett, Erick</creatorcontrib><creatorcontrib>Chaudhary, Ranjeet S.</creatorcontrib><creatorcontrib>Jayaraman, Somasundaram</creatorcontrib><creatorcontrib>Vassanda Coumar, Mounisamy</creatorcontrib><creatorcontrib>Thakur, Jyoti K.</creatorcontrib><creatorcontrib>Dey, Pradip</creatorcontrib><creatorcontrib>Shepherd, Keith</creatorcontrib><creatorcontrib>Muchhala, Pankaj</creatorcontrib><creatorcontrib>Weullow, Elvis</creatorcontrib><creatorcontrib>Singh, Muneshwar</creatorcontrib><creatorcontrib>Dhyani, Shiv K.</creatorcontrib><creatorcontrib>Biradar, Chandrashekhar</creatorcontrib><creatorcontrib>Rizvi, Javed</creatorcontrib><creatorcontrib>Patra, Ashok K.</creatorcontrib><creatorcontrib>Chaudhari, Suresh K.</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hati, Kuntal M.</au><au>Sinha, Nishant K.</au><au>Mohanty, Monoranjan</au><au>Jha, Pramod</au><au>Londhe, Sunil</au><au>Sila, Andrew</au><au>Towett, Erick</au><au>Chaudhary, Ranjeet S.</au><au>Jayaraman, Somasundaram</au><au>Vassanda Coumar, Mounisamy</au><au>Thakur, Jyoti K.</au><au>Dey, Pradip</au><au>Shepherd, Keith</au><au>Muchhala, Pankaj</au><au>Weullow, Elvis</au><au>Singh, Muneshwar</au><au>Dhyani, Shiv K.</au><au>Biradar, Chandrashekhar</au><au>Rizvi, Javed</au><au>Patra, Ashok K.</au><au>Chaudhari, Suresh K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mid-Infrared Reflectance Spectroscopy for Estimation of Soil Properties of Alfisols from Eastern India</atitle><jtitle>Sustainability</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>14</volume><issue>9</issue><spage>4883</spage><pages>4883-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Mid-infrared (MIR) spectroscopy is emerging as one of the most promising technologies, as it is a rapid and cost-effective alternative to routine laboratory analysis for many soil properties. This study was conducted to evaluate the potential of mid-infrared spectroscopy for the rapid and nondestructive measurement of some important soil properties of Alfisols. A total of 336 georeferenced soil samples fromthe 0–15 cm soil layer of Alfisols that were collected from the eastern Indian states of Odisha and Jharkhand were used. The partial least-squares regression (PLSR), random forest, and support vector machine regression techniques were compared for the calibration of the spectral data with the wet chemistry soil data. The PLSR-based predictive models performed better than the other two regression techniques for all the soil properties, except for the electrical conductivity (EC). Good predictions with independent validation datasets were obtained for the clay and sand percentages and for the soil organic carbon (SOC) content, while satisfactory predictions were achieved for the silt percentage and the pH value. However, the performance of the predictive models was poor in the case of the EC and the extractable nutrients, such as the available phosphorus and potassium contents of the soil. Specific regions of the MIR spectra that contributed to the prediction of the soil SOC, the pH, and the clay and sand percentages were identified. The study demonstrates the potential of the MIR spectroscopic technique in the simultaneous estimation of the SOC content, the sand, clay, and silt percentages, and the pH of Alfisols from eastern India.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14094883</doi><orcidid>https://orcid.org/0000-0002-9161-4707</orcidid><orcidid>https://orcid.org/0000-0002-9532-9452</orcidid><orcidid>https://orcid.org/0000-0002-3991-8770</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2022-05, Vol.14 (9), p.4883 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2663113015 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Agricultural production Calibration Carbon Clay Contamination Electrical conductivity Electrical resistivity Infrared reflection Infrared spectra Infrared spectroscopy Laboratories Least squares method Minerals Nutrient availability Nutrients Organic carbon Organic soils Phosphorus Potassium Prediction models Productivity Sand Silt Soil fertility Soil layers Soil properties Support vector machines Sustainability |
title | Mid-Infrared Reflectance Spectroscopy for Estimation of Soil Properties of Alfisols from Eastern India |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mid-Infrared%20Reflectance%20Spectroscopy%20for%20Estimation%20of%20Soil%20Properties%20of%20Alfisols%20from%20Eastern%20India&rft.jtitle=Sustainability&rft.au=Hati,%20Kuntal%20M.&rft.date=2022-05-01&rft.volume=14&rft.issue=9&rft.spage=4883&rft.pages=4883-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14094883&rft_dat=%3Cproquest_cross%3E2663113015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663113015&rft_id=info:pmid/&rfr_iscdi=true |