Mid-Infrared Reflectance Spectroscopy for Estimation of Soil Properties of Alfisols from Eastern India

Mid-infrared (MIR) spectroscopy is emerging as one of the most promising technologies, as it is a rapid and cost-effective alternative to routine laboratory analysis for many soil properties. This study was conducted to evaluate the potential of mid-infrared spectroscopy for the rapid and nondestruc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-05, Vol.14 (9), p.4883
Hauptverfasser: Hati, Kuntal M., Sinha, Nishant K., Mohanty, Monoranjan, Jha, Pramod, Londhe, Sunil, Sila, Andrew, Towett, Erick, Chaudhary, Ranjeet S., Jayaraman, Somasundaram, Vassanda Coumar, Mounisamy, Thakur, Jyoti K., Dey, Pradip, Shepherd, Keith, Muchhala, Pankaj, Weullow, Elvis, Singh, Muneshwar, Dhyani, Shiv K., Biradar, Chandrashekhar, Rizvi, Javed, Patra, Ashok K., Chaudhari, Suresh K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 4883
container_title Sustainability
container_volume 14
creator Hati, Kuntal M.
Sinha, Nishant K.
Mohanty, Monoranjan
Jha, Pramod
Londhe, Sunil
Sila, Andrew
Towett, Erick
Chaudhary, Ranjeet S.
Jayaraman, Somasundaram
Vassanda Coumar, Mounisamy
Thakur, Jyoti K.
Dey, Pradip
Shepherd, Keith
Muchhala, Pankaj
Weullow, Elvis
Singh, Muneshwar
Dhyani, Shiv K.
Biradar, Chandrashekhar
Rizvi, Javed
Patra, Ashok K.
Chaudhari, Suresh K.
description Mid-infrared (MIR) spectroscopy is emerging as one of the most promising technologies, as it is a rapid and cost-effective alternative to routine laboratory analysis for many soil properties. This study was conducted to evaluate the potential of mid-infrared spectroscopy for the rapid and nondestructive measurement of some important soil properties of Alfisols. A total of 336 georeferenced soil samples fromthe 0–15 cm soil layer of Alfisols that were collected from the eastern Indian states of Odisha and Jharkhand were used. The partial least-squares regression (PLSR), random forest, and support vector machine regression techniques were compared for the calibration of the spectral data with the wet chemistry soil data. The PLSR-based predictive models performed better than the other two regression techniques for all the soil properties, except for the electrical conductivity (EC). Good predictions with independent validation datasets were obtained for the clay and sand percentages and for the soil organic carbon (SOC) content, while satisfactory predictions were achieved for the silt percentage and the pH value. However, the performance of the predictive models was poor in the case of the EC and the extractable nutrients, such as the available phosphorus and potassium contents of the soil. Specific regions of the MIR spectra that contributed to the prediction of the soil SOC, the pH, and the clay and sand percentages were identified. The study demonstrates the potential of the MIR spectroscopic technique in the simultaneous estimation of the SOC content, the sand, clay, and silt percentages, and the pH of Alfisols from eastern India.
doi_str_mv 10.3390/su14094883
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2663113015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663113015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-6321c1968fe00c23abda74fd319f7ecd96ff7bb8dcc05834c98f6ecbb37c11563</originalsourceid><addsrcrecordid>eNpNUNFKwzAUDaLgmHvxCwK-CdXcpk2bxzGmDiaK0-eSJrnQ0TU1SR_292ZM0PtyD4fDveccQm6BPXAu2WOYoGCyqGt-QWY5qyADVrLLf_iaLELYszScgwQxI_jamWwzoFfeGvphsbc6qkFbuhsT8i5oNx4pOk_XIXYHFTs3UId057qevns3Wh87G07UsscuuD5Q9O5A1ypE6we6GUynbsgVqj7Yxe-ek6-n9efqJdu-PW9Wy22mc1nGTPAcNEhRo2VM51y1RlUFmmQWK6uNFIhV29ZGa1bWvNCyRmF12_JKA5SCz8nd-e7o3fdkQ2z2bvJDetnkQnAAzqBMqvuzSqd8wVtsRp-i-WMDrDlV2fxVyX8A045nJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663113015</pqid></control><display><type>article</type><title>Mid-Infrared Reflectance Spectroscopy for Estimation of Soil Properties of Alfisols from Eastern India</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hati, Kuntal M. ; Sinha, Nishant K. ; Mohanty, Monoranjan ; Jha, Pramod ; Londhe, Sunil ; Sila, Andrew ; Towett, Erick ; Chaudhary, Ranjeet S. ; Jayaraman, Somasundaram ; Vassanda Coumar, Mounisamy ; Thakur, Jyoti K. ; Dey, Pradip ; Shepherd, Keith ; Muchhala, Pankaj ; Weullow, Elvis ; Singh, Muneshwar ; Dhyani, Shiv K. ; Biradar, Chandrashekhar ; Rizvi, Javed ; Patra, Ashok K. ; Chaudhari, Suresh K.</creator><creatorcontrib>Hati, Kuntal M. ; Sinha, Nishant K. ; Mohanty, Monoranjan ; Jha, Pramod ; Londhe, Sunil ; Sila, Andrew ; Towett, Erick ; Chaudhary, Ranjeet S. ; Jayaraman, Somasundaram ; Vassanda Coumar, Mounisamy ; Thakur, Jyoti K. ; Dey, Pradip ; Shepherd, Keith ; Muchhala, Pankaj ; Weullow, Elvis ; Singh, Muneshwar ; Dhyani, Shiv K. ; Biradar, Chandrashekhar ; Rizvi, Javed ; Patra, Ashok K. ; Chaudhari, Suresh K.</creatorcontrib><description>Mid-infrared (MIR) spectroscopy is emerging as one of the most promising technologies, as it is a rapid and cost-effective alternative to routine laboratory analysis for many soil properties. This study was conducted to evaluate the potential of mid-infrared spectroscopy for the rapid and nondestructive measurement of some important soil properties of Alfisols. A total of 336 georeferenced soil samples fromthe 0–15 cm soil layer of Alfisols that were collected from the eastern Indian states of Odisha and Jharkhand were used. The partial least-squares regression (PLSR), random forest, and support vector machine regression techniques were compared for the calibration of the spectral data with the wet chemistry soil data. The PLSR-based predictive models performed better than the other two regression techniques for all the soil properties, except for the electrical conductivity (EC). Good predictions with independent validation datasets were obtained for the clay and sand percentages and for the soil organic carbon (SOC) content, while satisfactory predictions were achieved for the silt percentage and the pH value. However, the performance of the predictive models was poor in the case of the EC and the extractable nutrients, such as the available phosphorus and potassium contents of the soil. Specific regions of the MIR spectra that contributed to the prediction of the soil SOC, the pH, and the clay and sand percentages were identified. The study demonstrates the potential of the MIR spectroscopic technique in the simultaneous estimation of the SOC content, the sand, clay, and silt percentages, and the pH of Alfisols from eastern India.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14094883</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Agricultural production ; Calibration ; Carbon ; Clay ; Contamination ; Electrical conductivity ; Electrical resistivity ; Infrared reflection ; Infrared spectra ; Infrared spectroscopy ; Laboratories ; Least squares method ; Minerals ; Nutrient availability ; Nutrients ; Organic carbon ; Organic soils ; Phosphorus ; Potassium ; Prediction models ; Productivity ; Sand ; Silt ; Soil fertility ; Soil layers ; Soil properties ; Support vector machines ; Sustainability</subject><ispartof>Sustainability, 2022-05, Vol.14 (9), p.4883</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-6321c1968fe00c23abda74fd319f7ecd96ff7bb8dcc05834c98f6ecbb37c11563</citedby><cites>FETCH-LOGICAL-c295t-6321c1968fe00c23abda74fd319f7ecd96ff7bb8dcc05834c98f6ecbb37c11563</cites><orcidid>0000-0002-9161-4707 ; 0000-0002-9532-9452 ; 0000-0002-3991-8770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hati, Kuntal M.</creatorcontrib><creatorcontrib>Sinha, Nishant K.</creatorcontrib><creatorcontrib>Mohanty, Monoranjan</creatorcontrib><creatorcontrib>Jha, Pramod</creatorcontrib><creatorcontrib>Londhe, Sunil</creatorcontrib><creatorcontrib>Sila, Andrew</creatorcontrib><creatorcontrib>Towett, Erick</creatorcontrib><creatorcontrib>Chaudhary, Ranjeet S.</creatorcontrib><creatorcontrib>Jayaraman, Somasundaram</creatorcontrib><creatorcontrib>Vassanda Coumar, Mounisamy</creatorcontrib><creatorcontrib>Thakur, Jyoti K.</creatorcontrib><creatorcontrib>Dey, Pradip</creatorcontrib><creatorcontrib>Shepherd, Keith</creatorcontrib><creatorcontrib>Muchhala, Pankaj</creatorcontrib><creatorcontrib>Weullow, Elvis</creatorcontrib><creatorcontrib>Singh, Muneshwar</creatorcontrib><creatorcontrib>Dhyani, Shiv K.</creatorcontrib><creatorcontrib>Biradar, Chandrashekhar</creatorcontrib><creatorcontrib>Rizvi, Javed</creatorcontrib><creatorcontrib>Patra, Ashok K.</creatorcontrib><creatorcontrib>Chaudhari, Suresh K.</creatorcontrib><title>Mid-Infrared Reflectance Spectroscopy for Estimation of Soil Properties of Alfisols from Eastern India</title><title>Sustainability</title><description>Mid-infrared (MIR) spectroscopy is emerging as one of the most promising technologies, as it is a rapid and cost-effective alternative to routine laboratory analysis for many soil properties. This study was conducted to evaluate the potential of mid-infrared spectroscopy for the rapid and nondestructive measurement of some important soil properties of Alfisols. A total of 336 georeferenced soil samples fromthe 0–15 cm soil layer of Alfisols that were collected from the eastern Indian states of Odisha and Jharkhand were used. The partial least-squares regression (PLSR), random forest, and support vector machine regression techniques were compared for the calibration of the spectral data with the wet chemistry soil data. The PLSR-based predictive models performed better than the other two regression techniques for all the soil properties, except for the electrical conductivity (EC). Good predictions with independent validation datasets were obtained for the clay and sand percentages and for the soil organic carbon (SOC) content, while satisfactory predictions were achieved for the silt percentage and the pH value. However, the performance of the predictive models was poor in the case of the EC and the extractable nutrients, such as the available phosphorus and potassium contents of the soil. Specific regions of the MIR spectra that contributed to the prediction of the soil SOC, the pH, and the clay and sand percentages were identified. The study demonstrates the potential of the MIR spectroscopic technique in the simultaneous estimation of the SOC content, the sand, clay, and silt percentages, and the pH of Alfisols from eastern India.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>Calibration</subject><subject>Carbon</subject><subject>Clay</subject><subject>Contamination</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Infrared reflection</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Laboratories</subject><subject>Least squares method</subject><subject>Minerals</subject><subject>Nutrient availability</subject><subject>Nutrients</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Phosphorus</subject><subject>Potassium</subject><subject>Prediction models</subject><subject>Productivity</subject><subject>Sand</subject><subject>Silt</subject><subject>Soil fertility</subject><subject>Soil layers</subject><subject>Soil properties</subject><subject>Support vector machines</subject><subject>Sustainability</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUNFKwzAUDaLgmHvxCwK-CdXcpk2bxzGmDiaK0-eSJrnQ0TU1SR_292ZM0PtyD4fDveccQm6BPXAu2WOYoGCyqGt-QWY5qyADVrLLf_iaLELYszScgwQxI_jamWwzoFfeGvphsbc6qkFbuhsT8i5oNx4pOk_XIXYHFTs3UId057qevns3Wh87G07UsscuuD5Q9O5A1ypE6we6GUynbsgVqj7Yxe-ek6-n9efqJdu-PW9Wy22mc1nGTPAcNEhRo2VM51y1RlUFmmQWK6uNFIhV29ZGa1bWvNCyRmF12_JKA5SCz8nd-e7o3fdkQ2z2bvJDetnkQnAAzqBMqvuzSqd8wVtsRp-i-WMDrDlV2fxVyX8A045nJA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Hati, Kuntal M.</creator><creator>Sinha, Nishant K.</creator><creator>Mohanty, Monoranjan</creator><creator>Jha, Pramod</creator><creator>Londhe, Sunil</creator><creator>Sila, Andrew</creator><creator>Towett, Erick</creator><creator>Chaudhary, Ranjeet S.</creator><creator>Jayaraman, Somasundaram</creator><creator>Vassanda Coumar, Mounisamy</creator><creator>Thakur, Jyoti K.</creator><creator>Dey, Pradip</creator><creator>Shepherd, Keith</creator><creator>Muchhala, Pankaj</creator><creator>Weullow, Elvis</creator><creator>Singh, Muneshwar</creator><creator>Dhyani, Shiv K.</creator><creator>Biradar, Chandrashekhar</creator><creator>Rizvi, Javed</creator><creator>Patra, Ashok K.</creator><creator>Chaudhari, Suresh K.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9161-4707</orcidid><orcidid>https://orcid.org/0000-0002-9532-9452</orcidid><orcidid>https://orcid.org/0000-0002-3991-8770</orcidid></search><sort><creationdate>20220501</creationdate><title>Mid-Infrared Reflectance Spectroscopy for Estimation of Soil Properties of Alfisols from Eastern India</title><author>Hati, Kuntal M. ; Sinha, Nishant K. ; Mohanty, Monoranjan ; Jha, Pramod ; Londhe, Sunil ; Sila, Andrew ; Towett, Erick ; Chaudhary, Ranjeet S. ; Jayaraman, Somasundaram ; Vassanda Coumar, Mounisamy ; Thakur, Jyoti K. ; Dey, Pradip ; Shepherd, Keith ; Muchhala, Pankaj ; Weullow, Elvis ; Singh, Muneshwar ; Dhyani, Shiv K. ; Biradar, Chandrashekhar ; Rizvi, Javed ; Patra, Ashok K. ; Chaudhari, Suresh K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-6321c1968fe00c23abda74fd319f7ecd96ff7bb8dcc05834c98f6ecbb37c11563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>Calibration</topic><topic>Carbon</topic><topic>Clay</topic><topic>Contamination</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Infrared reflection</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Laboratories</topic><topic>Least squares method</topic><topic>Minerals</topic><topic>Nutrient availability</topic><topic>Nutrients</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Phosphorus</topic><topic>Potassium</topic><topic>Prediction models</topic><topic>Productivity</topic><topic>Sand</topic><topic>Silt</topic><topic>Soil fertility</topic><topic>Soil layers</topic><topic>Soil properties</topic><topic>Support vector machines</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hati, Kuntal M.</creatorcontrib><creatorcontrib>Sinha, Nishant K.</creatorcontrib><creatorcontrib>Mohanty, Monoranjan</creatorcontrib><creatorcontrib>Jha, Pramod</creatorcontrib><creatorcontrib>Londhe, Sunil</creatorcontrib><creatorcontrib>Sila, Andrew</creatorcontrib><creatorcontrib>Towett, Erick</creatorcontrib><creatorcontrib>Chaudhary, Ranjeet S.</creatorcontrib><creatorcontrib>Jayaraman, Somasundaram</creatorcontrib><creatorcontrib>Vassanda Coumar, Mounisamy</creatorcontrib><creatorcontrib>Thakur, Jyoti K.</creatorcontrib><creatorcontrib>Dey, Pradip</creatorcontrib><creatorcontrib>Shepherd, Keith</creatorcontrib><creatorcontrib>Muchhala, Pankaj</creatorcontrib><creatorcontrib>Weullow, Elvis</creatorcontrib><creatorcontrib>Singh, Muneshwar</creatorcontrib><creatorcontrib>Dhyani, Shiv K.</creatorcontrib><creatorcontrib>Biradar, Chandrashekhar</creatorcontrib><creatorcontrib>Rizvi, Javed</creatorcontrib><creatorcontrib>Patra, Ashok K.</creatorcontrib><creatorcontrib>Chaudhari, Suresh K.</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hati, Kuntal M.</au><au>Sinha, Nishant K.</au><au>Mohanty, Monoranjan</au><au>Jha, Pramod</au><au>Londhe, Sunil</au><au>Sila, Andrew</au><au>Towett, Erick</au><au>Chaudhary, Ranjeet S.</au><au>Jayaraman, Somasundaram</au><au>Vassanda Coumar, Mounisamy</au><au>Thakur, Jyoti K.</au><au>Dey, Pradip</au><au>Shepherd, Keith</au><au>Muchhala, Pankaj</au><au>Weullow, Elvis</au><au>Singh, Muneshwar</au><au>Dhyani, Shiv K.</au><au>Biradar, Chandrashekhar</au><au>Rizvi, Javed</au><au>Patra, Ashok K.</au><au>Chaudhari, Suresh K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mid-Infrared Reflectance Spectroscopy for Estimation of Soil Properties of Alfisols from Eastern India</atitle><jtitle>Sustainability</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>14</volume><issue>9</issue><spage>4883</spage><pages>4883-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Mid-infrared (MIR) spectroscopy is emerging as one of the most promising technologies, as it is a rapid and cost-effective alternative to routine laboratory analysis for many soil properties. This study was conducted to evaluate the potential of mid-infrared spectroscopy for the rapid and nondestructive measurement of some important soil properties of Alfisols. A total of 336 georeferenced soil samples fromthe 0–15 cm soil layer of Alfisols that were collected from the eastern Indian states of Odisha and Jharkhand were used. The partial least-squares regression (PLSR), random forest, and support vector machine regression techniques were compared for the calibration of the spectral data with the wet chemistry soil data. The PLSR-based predictive models performed better than the other two regression techniques for all the soil properties, except for the electrical conductivity (EC). Good predictions with independent validation datasets were obtained for the clay and sand percentages and for the soil organic carbon (SOC) content, while satisfactory predictions were achieved for the silt percentage and the pH value. However, the performance of the predictive models was poor in the case of the EC and the extractable nutrients, such as the available phosphorus and potassium contents of the soil. Specific regions of the MIR spectra that contributed to the prediction of the soil SOC, the pH, and the clay and sand percentages were identified. The study demonstrates the potential of the MIR spectroscopic technique in the simultaneous estimation of the SOC content, the sand, clay, and silt percentages, and the pH of Alfisols from eastern India.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14094883</doi><orcidid>https://orcid.org/0000-0002-9161-4707</orcidid><orcidid>https://orcid.org/0000-0002-9532-9452</orcidid><orcidid>https://orcid.org/0000-0002-3991-8770</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-05, Vol.14 (9), p.4883
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2663113015
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Agricultural production
Calibration
Carbon
Clay
Contamination
Electrical conductivity
Electrical resistivity
Infrared reflection
Infrared spectra
Infrared spectroscopy
Laboratories
Least squares method
Minerals
Nutrient availability
Nutrients
Organic carbon
Organic soils
Phosphorus
Potassium
Prediction models
Productivity
Sand
Silt
Soil fertility
Soil layers
Soil properties
Support vector machines
Sustainability
title Mid-Infrared Reflectance Spectroscopy for Estimation of Soil Properties of Alfisols from Eastern India
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mid-Infrared%20Reflectance%20Spectroscopy%20for%20Estimation%20of%20Soil%20Properties%20of%20Alfisols%20from%20Eastern%20India&rft.jtitle=Sustainability&rft.au=Hati,%20Kuntal%20M.&rft.date=2022-05-01&rft.volume=14&rft.issue=9&rft.spage=4883&rft.pages=4883-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14094883&rft_dat=%3Cproquest_cross%3E2663113015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663113015&rft_id=info:pmid/&rfr_iscdi=true