Automatic License Plate Recognition in Real-World Traffic Videos Captured in Unconstrained Environment by a Mobile Camera
Automatic License Plate Recognition (ALPR) has remained an active research topic for years due to various applications, especially in Intelligent Transportation Systems (ITS). This paper presents an efficient ALPR technique based on deep learning, which accurately performs license plate (LP) recogni...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-05, Vol.11 (9), p.1408 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1408 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Khan, Ishtiaq Rasool Ali, Syed Talha Abid Siddiq, Asif Khan, Muhammad Murtaza Ilyas, Muhammad Usman Alshomrani, Saleh Rahardja, Susanto |
description | Automatic License Plate Recognition (ALPR) has remained an active research topic for years due to various applications, especially in Intelligent Transportation Systems (ITS). This paper presents an efficient ALPR technique based on deep learning, which accurately performs license plate (LP) recognition tasks in an unconstrained environment, even when trained on a limited dataset. We capture real traffic videos in the city and label the LPs and the alphanumeric characters in the LPs within different frames to generate training and testing datasets. Data augmentation techniques are applied to increase the number of training and testing samples. We apply the transfer learning approach to train the recently released YOLOv5 object detecting framework to detect the LPs and the alphanumerics. Next, we train a convolutional neural network (CNN) to recognize the detected alphanumerics. The proposed technique achieved a recognition rate of 92.8% on a challenging proprietary dataset collected in several jurisdictions of Saudi Arabia. This accuracy is higher than what was achieved on the same dataset by commercially available Sighthound (86%), PlateRecognizer (67%), OpenALPR (77%), and a state-of-the-art recent CNN model (82%). The proposed system also outperformed the existing ALPR solutions on several benchmark datasets. |
doi_str_mv | 10.3390/electronics11091408 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2662908659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2662908659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-ef98f1e17a0a9a40bddda0cbdf3f20e9732a8ef5308d2f5e2a0a75b4a02993ee3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWGp_gZeA59V8dLubYyn1AyqKtHpcZrMTSdlNapIK_fem1IMH5zIfPPPO8BJyzdmtlIrdYY86Be-sjpwzxaesPiMjwSpVKKHE-Z_6kkxi3LIcistashE5zPfJD5Cspiur0UWkrz0kpG-o_aezyXpHrcst9MWHD31H1wGMyfy77dBHuoBd2gfsjtTGae9iCmBdHizdt81_DegSbQ8U6LNvbY95Y8AAV-TCQB9x8pvHZHO_XC8ei9XLw9Niviq0KEUq0KjacOQVMFAwZW3XdcB02xlpBENVSQE1mlKyuhOmRJG5qmynwIRSElGOyc1Jdxf81x5jarZ-H1w-2YjZTChWz0qVKXmidPAxBjTNLtgBwqHhrDna3Pxjs_wBb2R1oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662908659</pqid></control><display><type>article</type><title>Automatic License Plate Recognition in Real-World Traffic Videos Captured in Unconstrained Environment by a Mobile Camera</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Khan, Ishtiaq Rasool ; Ali, Syed Talha Abid ; Siddiq, Asif ; Khan, Muhammad Murtaza ; Ilyas, Muhammad Usman ; Alshomrani, Saleh ; Rahardja, Susanto</creator><creatorcontrib>Khan, Ishtiaq Rasool ; Ali, Syed Talha Abid ; Siddiq, Asif ; Khan, Muhammad Murtaza ; Ilyas, Muhammad Usman ; Alshomrani, Saleh ; Rahardja, Susanto</creatorcontrib><description>Automatic License Plate Recognition (ALPR) has remained an active research topic for years due to various applications, especially in Intelligent Transportation Systems (ITS). This paper presents an efficient ALPR technique based on deep learning, which accurately performs license plate (LP) recognition tasks in an unconstrained environment, even when trained on a limited dataset. We capture real traffic videos in the city and label the LPs and the alphanumeric characters in the LPs within different frames to generate training and testing datasets. Data augmentation techniques are applied to increase the number of training and testing samples. We apply the transfer learning approach to train the recently released YOLOv5 object detecting framework to detect the LPs and the alphanumerics. Next, we train a convolutional neural network (CNN) to recognize the detected alphanumerics. The proposed technique achieved a recognition rate of 92.8% on a challenging proprietary dataset collected in several jurisdictions of Saudi Arabia. This accuracy is higher than what was achieved on the same dataset by commercially available Sighthound (86%), PlateRecognizer (67%), OpenALPR (77%), and a state-of-the-art recent CNN model (82%). The proposed system also outperformed the existing ALPR solutions on several benchmark datasets.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11091408</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Access control ; Accuracy ; Algorithms ; Artificial neural networks ; Automatic vehicle identification systems ; Cameras ; Datasets ; Deep learning ; Intelligent transportation systems ; License plates ; Licenses ; Morphology ; Neural networks ; Recognition ; Sensors ; Traffic ; Training ; Video</subject><ispartof>Electronics (Basel), 2022-05, Vol.11 (9), p.1408</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-ef98f1e17a0a9a40bddda0cbdf3f20e9732a8ef5308d2f5e2a0a75b4a02993ee3</citedby><cites>FETCH-LOGICAL-c252t-ef98f1e17a0a9a40bddda0cbdf3f20e9732a8ef5308d2f5e2a0a75b4a02993ee3</cites><orcidid>0000-0002-3887-9052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khan, Ishtiaq Rasool</creatorcontrib><creatorcontrib>Ali, Syed Talha Abid</creatorcontrib><creatorcontrib>Siddiq, Asif</creatorcontrib><creatorcontrib>Khan, Muhammad Murtaza</creatorcontrib><creatorcontrib>Ilyas, Muhammad Usman</creatorcontrib><creatorcontrib>Alshomrani, Saleh</creatorcontrib><creatorcontrib>Rahardja, Susanto</creatorcontrib><title>Automatic License Plate Recognition in Real-World Traffic Videos Captured in Unconstrained Environment by a Mobile Camera</title><title>Electronics (Basel)</title><description>Automatic License Plate Recognition (ALPR) has remained an active research topic for years due to various applications, especially in Intelligent Transportation Systems (ITS). This paper presents an efficient ALPR technique based on deep learning, which accurately performs license plate (LP) recognition tasks in an unconstrained environment, even when trained on a limited dataset. We capture real traffic videos in the city and label the LPs and the alphanumeric characters in the LPs within different frames to generate training and testing datasets. Data augmentation techniques are applied to increase the number of training and testing samples. We apply the transfer learning approach to train the recently released YOLOv5 object detecting framework to detect the LPs and the alphanumerics. Next, we train a convolutional neural network (CNN) to recognize the detected alphanumerics. The proposed technique achieved a recognition rate of 92.8% on a challenging proprietary dataset collected in several jurisdictions of Saudi Arabia. This accuracy is higher than what was achieved on the same dataset by commercially available Sighthound (86%), PlateRecognizer (67%), OpenALPR (77%), and a state-of-the-art recent CNN model (82%). The proposed system also outperformed the existing ALPR solutions on several benchmark datasets.</description><subject>Access control</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automatic vehicle identification systems</subject><subject>Cameras</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Intelligent transportation systems</subject><subject>License plates</subject><subject>Licenses</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Recognition</subject><subject>Sensors</subject><subject>Traffic</subject><subject>Training</subject><subject>Video</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE1LAzEQhoMoWGp_gZeA59V8dLubYyn1AyqKtHpcZrMTSdlNapIK_fem1IMH5zIfPPPO8BJyzdmtlIrdYY86Be-sjpwzxaesPiMjwSpVKKHE-Z_6kkxi3LIcistashE5zPfJD5Cspiur0UWkrz0kpG-o_aezyXpHrcst9MWHD31H1wGMyfy77dBHuoBd2gfsjtTGae9iCmBdHizdt81_DegSbQ8U6LNvbY95Y8AAV-TCQB9x8pvHZHO_XC8ei9XLw9Niviq0KEUq0KjacOQVMFAwZW3XdcB02xlpBENVSQE1mlKyuhOmRJG5qmynwIRSElGOyc1Jdxf81x5jarZ-H1w-2YjZTChWz0qVKXmidPAxBjTNLtgBwqHhrDna3Pxjs_wBb2R1oA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Khan, Ishtiaq Rasool</creator><creator>Ali, Syed Talha Abid</creator><creator>Siddiq, Asif</creator><creator>Khan, Muhammad Murtaza</creator><creator>Ilyas, Muhammad Usman</creator><creator>Alshomrani, Saleh</creator><creator>Rahardja, Susanto</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3887-9052</orcidid></search><sort><creationdate>20220501</creationdate><title>Automatic License Plate Recognition in Real-World Traffic Videos Captured in Unconstrained Environment by a Mobile Camera</title><author>Khan, Ishtiaq Rasool ; Ali, Syed Talha Abid ; Siddiq, Asif ; Khan, Muhammad Murtaza ; Ilyas, Muhammad Usman ; Alshomrani, Saleh ; Rahardja, Susanto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-ef98f1e17a0a9a40bddda0cbdf3f20e9732a8ef5308d2f5e2a0a75b4a02993ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Access control</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automatic vehicle identification systems</topic><topic>Cameras</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Intelligent transportation systems</topic><topic>License plates</topic><topic>Licenses</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Recognition</topic><topic>Sensors</topic><topic>Traffic</topic><topic>Training</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Ishtiaq Rasool</creatorcontrib><creatorcontrib>Ali, Syed Talha Abid</creatorcontrib><creatorcontrib>Siddiq, Asif</creatorcontrib><creatorcontrib>Khan, Muhammad Murtaza</creatorcontrib><creatorcontrib>Ilyas, Muhammad Usman</creatorcontrib><creatorcontrib>Alshomrani, Saleh</creatorcontrib><creatorcontrib>Rahardja, Susanto</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Ishtiaq Rasool</au><au>Ali, Syed Talha Abid</au><au>Siddiq, Asif</au><au>Khan, Muhammad Murtaza</au><au>Ilyas, Muhammad Usman</au><au>Alshomrani, Saleh</au><au>Rahardja, Susanto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic License Plate Recognition in Real-World Traffic Videos Captured in Unconstrained Environment by a Mobile Camera</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>11</volume><issue>9</issue><spage>1408</spage><pages>1408-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Automatic License Plate Recognition (ALPR) has remained an active research topic for years due to various applications, especially in Intelligent Transportation Systems (ITS). This paper presents an efficient ALPR technique based on deep learning, which accurately performs license plate (LP) recognition tasks in an unconstrained environment, even when trained on a limited dataset. We capture real traffic videos in the city and label the LPs and the alphanumeric characters in the LPs within different frames to generate training and testing datasets. Data augmentation techniques are applied to increase the number of training and testing samples. We apply the transfer learning approach to train the recently released YOLOv5 object detecting framework to detect the LPs and the alphanumerics. Next, we train a convolutional neural network (CNN) to recognize the detected alphanumerics. The proposed technique achieved a recognition rate of 92.8% on a challenging proprietary dataset collected in several jurisdictions of Saudi Arabia. This accuracy is higher than what was achieved on the same dataset by commercially available Sighthound (86%), PlateRecognizer (67%), OpenALPR (77%), and a state-of-the-art recent CNN model (82%). The proposed system also outperformed the existing ALPR solutions on several benchmark datasets.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11091408</doi><orcidid>https://orcid.org/0000-0002-3887-9052</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-05, Vol.11 (9), p.1408 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2662908659 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Access control Accuracy Algorithms Artificial neural networks Automatic vehicle identification systems Cameras Datasets Deep learning Intelligent transportation systems License plates Licenses Morphology Neural networks Recognition Sensors Traffic Training Video |
title | Automatic License Plate Recognition in Real-World Traffic Videos Captured in Unconstrained Environment by a Mobile Camera |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20License%20Plate%20Recognition%20in%20Real-World%20Traffic%20Videos%20Captured%20in%20Unconstrained%20Environment%20by%20a%20Mobile%20Camera&rft.jtitle=Electronics%20(Basel)&rft.au=Khan,%20Ishtiaq%20Rasool&rft.date=2022-05-01&rft.volume=11&rft.issue=9&rft.spage=1408&rft.pages=1408-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11091408&rft_dat=%3Cproquest_cross%3E2662908659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662908659&rft_id=info:pmid/&rfr_iscdi=true |