Transport properties of binary phosphide AgP2 denoting high Hall mobility and low lattice thermal conductivity

This study found that polycrystalline AgP2 shows intrinsic semiconducting electrical conductivity with Hall mobility of 51 cm2 V−1 s−1, which is as high as that of Mg2Si, and lattice thermal conductivity of 1.2 W K−1 m−1, which is as low as that of Bi2Te3. First-principles calculations theoretically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research express 2022-05, Vol.9 (5), p.055901
Hauptverfasser: Miyata, Masanobu, Koyano, Mikio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 055901
container_title Materials research express
container_volume 9
creator Miyata, Masanobu
Koyano, Mikio
description This study found that polycrystalline AgP2 shows intrinsic semiconducting electrical conductivity with Hall mobility of 51 cm2 V−1 s−1, which is as high as that of Mg2Si, and lattice thermal conductivity of 1.2 W K−1 m−1, which is as low as that of Bi2Te3. First-principles calculations theoretically indicate AgP2 as an intrinsic semiconductor, and indicate the estimated carrier relaxation time τ as 3.3 fs, which is long for a polycrystalline material. Moreover, the effective mass of hole m* is approximately 0.11 times that of free electrons. These results indicate that long τ and light m* of the carrier are the origins of the high experimentally obtained Hall mobility. Phonon calculations indicate that the Ag atoms in AgP2 exhibit highly anharmonic phonon modes with mode Grüneisen parameters of more than 2 in the 50–100 cm−1 low-frequency range. The large anharmonic vibrations of the Ag atoms reduce the phonon mean free path. Moreover, the lattice thermal conductivity was found, experimentally and theoretically, to be as low as approx. 1.2 W K−1 m−1 at room temperature by phonon–phonon and grain-boundary scattering.
doi_str_mv 10.1088/2053-1591/ac6ccc
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2662754450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c560a9c199d044be896db6a60a11f518</doaj_id><sourcerecordid>2662754450</sourcerecordid><originalsourceid>FETCH-LOGICAL-d355t-14655d9c83f1789a528e433fca42249c5b2ce050aa307888128790762b9477813</originalsourceid><addsrcrecordid>eNptkU1LJDEQhpsFQVHvHgMLe3LWfFU6OYq4qyDoQc-hOklPZ-jp9KYzuv57MzvL7sVTwcvDS1U9TXPB6HdGtb7iFMSKgWFX6JRz7ktz8i86bs6XZUMp5a0RwNVJMz1nnJY55ULmnOaQSwwLST3p4oT5ncxDWuYh-kCu10-c-DClEqc1GeJ6IHc4jmSbujjG8k5w8mRMb2TEUqILpAwhb3EkLk1-50p8rdBZc9TjuITzv_O0eflx-3xzt3p4_Hl_c_2w8gKgrJhUAN44LXrWaoPAdZBC9A4l59I46LgLFCiioK3WmnHdGtoq3hnZtpqJ0-b-0OsTbuyc47YeYxNG-ydIeW2xnurGYB0oisYxYzyVsgvaKN8prCFjPTBdu74euuqDfu3CUuwm7fJU17dcKd6ClEAr9e1AxTT_B7b5tzUWLAUwlNnZ9xW8_ARk1O7t2b0qu1dlD_bEBxgVjkY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662754450</pqid></control><display><type>article</type><title>Transport properties of binary phosphide AgP2 denoting high Hall mobility and low lattice thermal conductivity</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Miyata, Masanobu ; Koyano, Mikio</creator><creatorcontrib>Miyata, Masanobu ; Koyano, Mikio</creatorcontrib><description>This study found that polycrystalline AgP2 shows intrinsic semiconducting electrical conductivity with Hall mobility of 51 cm2 V−1 s−1, which is as high as that of Mg2Si, and lattice thermal conductivity of 1.2 W K−1 m−1, which is as low as that of Bi2Te3. First-principles calculations theoretically indicate AgP2 as an intrinsic semiconductor, and indicate the estimated carrier relaxation time τ as 3.3 fs, which is long for a polycrystalline material. Moreover, the effective mass of hole m* is approximately 0.11 times that of free electrons. These results indicate that long τ and light m* of the carrier are the origins of the high experimentally obtained Hall mobility. Phonon calculations indicate that the Ag atoms in AgP2 exhibit highly anharmonic phonon modes with mode Grüneisen parameters of more than 2 in the 50–100 cm−1 low-frequency range. The large anharmonic vibrations of the Ag atoms reduce the phonon mean free path. Moreover, the lattice thermal conductivity was found, experimentally and theoretically, to be as low as approx. 1.2 W K−1 m−1 at room temperature by phonon–phonon and grain-boundary scattering.</description><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ac6ccc</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Anharmonicity ; Electrical resistivity ; Electron mobility ; electron transport properties ; First principles ; Free electrons ; Frequency ranges ; Gruneisen parameter ; Hall effect ; Heat conductivity ; Heat transfer ; Lattice vibration ; Magnesium compounds ; Mathematical analysis ; Metal silicides ; phonon transport properties ; Phonons ; phosphide ; Phosphides ; Polycrystals ; Relaxation time ; Room temperature ; Semiconductors ; Thermal conductivity ; thermoelectric ; Transport properties</subject><ispartof>Materials research express, 2022-05, Vol.9 (5), p.055901</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><rights>2022 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1290-0984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1591/ac6ccc/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2095,27903,27904,38847,38869,53819,53846</link.rule.ids></links><search><creatorcontrib>Miyata, Masanobu</creatorcontrib><creatorcontrib>Koyano, Mikio</creatorcontrib><title>Transport properties of binary phosphide AgP2 denoting high Hall mobility and low lattice thermal conductivity</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>This study found that polycrystalline AgP2 shows intrinsic semiconducting electrical conductivity with Hall mobility of 51 cm2 V−1 s−1, which is as high as that of Mg2Si, and lattice thermal conductivity of 1.2 W K−1 m−1, which is as low as that of Bi2Te3. First-principles calculations theoretically indicate AgP2 as an intrinsic semiconductor, and indicate the estimated carrier relaxation time τ as 3.3 fs, which is long for a polycrystalline material. Moreover, the effective mass of hole m* is approximately 0.11 times that of free electrons. These results indicate that long τ and light m* of the carrier are the origins of the high experimentally obtained Hall mobility. Phonon calculations indicate that the Ag atoms in AgP2 exhibit highly anharmonic phonon modes with mode Grüneisen parameters of more than 2 in the 50–100 cm−1 low-frequency range. The large anharmonic vibrations of the Ag atoms reduce the phonon mean free path. Moreover, the lattice thermal conductivity was found, experimentally and theoretically, to be as low as approx. 1.2 W K−1 m−1 at room temperature by phonon–phonon and grain-boundary scattering.</description><subject>Anharmonicity</subject><subject>Electrical resistivity</subject><subject>Electron mobility</subject><subject>electron transport properties</subject><subject>First principles</subject><subject>Free electrons</subject><subject>Frequency ranges</subject><subject>Gruneisen parameter</subject><subject>Hall effect</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Lattice vibration</subject><subject>Magnesium compounds</subject><subject>Mathematical analysis</subject><subject>Metal silicides</subject><subject>phonon transport properties</subject><subject>Phonons</subject><subject>phosphide</subject><subject>Phosphides</subject><subject>Polycrystals</subject><subject>Relaxation time</subject><subject>Room temperature</subject><subject>Semiconductors</subject><subject>Thermal conductivity</subject><subject>thermoelectric</subject><subject>Transport properties</subject><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNptkU1LJDEQhpsFQVHvHgMLe3LWfFU6OYq4qyDoQc-hOklPZ-jp9KYzuv57MzvL7sVTwcvDS1U9TXPB6HdGtb7iFMSKgWFX6JRz7ktz8i86bs6XZUMp5a0RwNVJMz1nnJY55ULmnOaQSwwLST3p4oT5ncxDWuYh-kCu10-c-DClEqc1GeJ6IHc4jmSbujjG8k5w8mRMb2TEUqILpAwhb3EkLk1-50p8rdBZc9TjuITzv_O0eflx-3xzt3p4_Hl_c_2w8gKgrJhUAN44LXrWaoPAdZBC9A4l59I46LgLFCiioK3WmnHdGtoq3hnZtpqJ0-b-0OsTbuyc47YeYxNG-ydIeW2xnurGYB0oisYxYzyVsgvaKN8prCFjPTBdu74euuqDfu3CUuwm7fJU17dcKd6ClEAr9e1AxTT_B7b5tzUWLAUwlNnZ9xW8_ARk1O7t2b0qu1dlD_bEBxgVjkY</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Miyata, Masanobu</creator><creator>Koyano, Mikio</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1290-0984</orcidid></search><sort><creationdate>20220501</creationdate><title>Transport properties of binary phosphide AgP2 denoting high Hall mobility and low lattice thermal conductivity</title><author>Miyata, Masanobu ; Koyano, Mikio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d355t-14655d9c83f1789a528e433fca42249c5b2ce050aa307888128790762b9477813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anharmonicity</topic><topic>Electrical resistivity</topic><topic>Electron mobility</topic><topic>electron transport properties</topic><topic>First principles</topic><topic>Free electrons</topic><topic>Frequency ranges</topic><topic>Gruneisen parameter</topic><topic>Hall effect</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Lattice vibration</topic><topic>Magnesium compounds</topic><topic>Mathematical analysis</topic><topic>Metal silicides</topic><topic>phonon transport properties</topic><topic>Phonons</topic><topic>phosphide</topic><topic>Phosphides</topic><topic>Polycrystals</topic><topic>Relaxation time</topic><topic>Room temperature</topic><topic>Semiconductors</topic><topic>Thermal conductivity</topic><topic>thermoelectric</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miyata, Masanobu</creatorcontrib><creatorcontrib>Koyano, Mikio</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miyata, Masanobu</au><au>Koyano, Mikio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport properties of binary phosphide AgP2 denoting high Hall mobility and low lattice thermal conductivity</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>9</volume><issue>5</issue><spage>055901</spage><pages>055901-</pages><eissn>2053-1591</eissn><abstract>This study found that polycrystalline AgP2 shows intrinsic semiconducting electrical conductivity with Hall mobility of 51 cm2 V−1 s−1, which is as high as that of Mg2Si, and lattice thermal conductivity of 1.2 W K−1 m−1, which is as low as that of Bi2Te3. First-principles calculations theoretically indicate AgP2 as an intrinsic semiconductor, and indicate the estimated carrier relaxation time τ as 3.3 fs, which is long for a polycrystalline material. Moreover, the effective mass of hole m* is approximately 0.11 times that of free electrons. These results indicate that long τ and light m* of the carrier are the origins of the high experimentally obtained Hall mobility. Phonon calculations indicate that the Ag atoms in AgP2 exhibit highly anharmonic phonon modes with mode Grüneisen parameters of more than 2 in the 50–100 cm−1 low-frequency range. The large anharmonic vibrations of the Ag atoms reduce the phonon mean free path. Moreover, the lattice thermal conductivity was found, experimentally and theoretically, to be as low as approx. 1.2 W K−1 m−1 at room temperature by phonon–phonon and grain-boundary scattering.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ac6ccc</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1290-0984</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2053-1591
ispartof Materials research express, 2022-05, Vol.9 (5), p.055901
issn 2053-1591
language eng
recordid cdi_proquest_journals_2662754450
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals
subjects Anharmonicity
Electrical resistivity
Electron mobility
electron transport properties
First principles
Free electrons
Frequency ranges
Gruneisen parameter
Hall effect
Heat conductivity
Heat transfer
Lattice vibration
Magnesium compounds
Mathematical analysis
Metal silicides
phonon transport properties
Phonons
phosphide
Phosphides
Polycrystals
Relaxation time
Room temperature
Semiconductors
Thermal conductivity
thermoelectric
Transport properties
title Transport properties of binary phosphide AgP2 denoting high Hall mobility and low lattice thermal conductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20properties%20of%20binary%20phosphide%20AgP2%20denoting%20high%20Hall%20mobility%20and%20low%20lattice%20thermal%20conductivity&rft.jtitle=Materials%20research%20express&rft.au=Miyata,%20Masanobu&rft.date=2022-05-01&rft.volume=9&rft.issue=5&rft.spage=055901&rft.pages=055901-&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ac6ccc&rft_dat=%3Cproquest_doaj_%3E2662754450%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662754450&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_c560a9c199d044be896db6a60a11f518&rfr_iscdi=true