Fixed point theorems for χ,F-Dass–Gupta contraction mappings in b-metric spaces with applications to integral equations

In this paper, we introduce new types of χ , F -contraction mappings by involving rational expressions and establish two new fixed point theorems for this class of mappings in the setting of b -metric spaces. Furthermore, our results allow us to deduce, extend and improve some previous works in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletín de la Sociedad Matemática Mexicana 2022, Vol.28 (2)
Hauptverfasser: Zahi, Ouanassa, Ramoul, Hichem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Boletín de la Sociedad Matemática Mexicana
container_volume 28
creator Zahi, Ouanassa
Ramoul, Hichem
description In this paper, we introduce new types of χ , F -contraction mappings by involving rational expressions and establish two new fixed point theorems for this class of mappings in the setting of b -metric spaces. Furthermore, our results allow us to deduce, extend and improve some previous works in the existing literature. Along with these, some illustrative examples are also constructed in the support of our obtained fixed point theorems. As applications of our results, we investigate sufficient criteria for the existence and uniqueness of solution for certain types of nonlinear integral equations.
doi_str_mv 10.1007/s40590-022-00435-6
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2662728201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2662728201</sourcerecordid><originalsourceid>FETCH-LOGICAL-p726-8846681194c7b0a824eeb12789346d791c2693688f363e7bb3eb47cbb77235fa3</originalsourceid><addsrcrecordid>eNpFkM1KAzEURoMoWLQv4Crg1mj-JplZSrVVKLjpwt2QpJk2pZ2kSQbFlTsfwAfzHXwSp47g6sK9h_vxHQAuCL4mGMubxHFRYYQpRRhzViBxBEaUVgJxXhXHYER6AFHCnk_BOKUNxpgQhgtcjMDb1L3aJQzetRnmtfXR7hJsfIRfH1dTdKdS-n7_nHUhK2h8m6My2fkW7lQIrl0l6Fqo0c7m6AxMQRmb4IvLa9jft86oA5xg9j2X7SqqLbT7btieg5NGbZMd_80zsJjeLyYPaP40e5zczlGQVKCy5EKUhFTcSI1VSbm1mlBZVoyLpayIoaJioiwbJpiVWjOruTRaS0lZ0Sh2Bi6HtyH6fWdTrje-i22fWFMhqKQlxaSn2EClEPteNv5TBNcHzfWgue4117-aa8F-ADiJck8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662728201</pqid></control><display><type>article</type><title>Fixed point theorems for χ,F-Dass–Gupta contraction mappings in b-metric spaces with applications to integral equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zahi, Ouanassa ; Ramoul, Hichem</creator><creatorcontrib>Zahi, Ouanassa ; Ramoul, Hichem</creatorcontrib><description>In this paper, we introduce new types of χ , F -contraction mappings by involving rational expressions and establish two new fixed point theorems for this class of mappings in the setting of b -metric spaces. Furthermore, our results allow us to deduce, extend and improve some previous works in the existing literature. Along with these, some illustrative examples are also constructed in the support of our obtained fixed point theorems. As applications of our results, we investigate sufficient criteria for the existence and uniqueness of solution for certain types of nonlinear integral equations.</description><identifier>ISSN: 1405-213X</identifier><identifier>EISSN: 2296-4495</identifier><identifier>DOI: 10.1007/s40590-022-00435-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Fixed points (mathematics) ; Integral equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Metric space ; Original Article ; Theorems</subject><ispartof>Boletín de la Sociedad Matemática Mexicana, 2022, Vol.28 (2)</ispartof><rights>Sociedad Matemática Mexicana 2022</rights><rights>Sociedad Matemática Mexicana 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p726-8846681194c7b0a824eeb12789346d791c2693688f363e7bb3eb47cbb77235fa3</cites><orcidid>0000-0001-5074-3468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40590-022-00435-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40590-022-00435-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zahi, Ouanassa</creatorcontrib><creatorcontrib>Ramoul, Hichem</creatorcontrib><title>Fixed point theorems for χ,F-Dass–Gupta contraction mappings in b-metric spaces with applications to integral equations</title><title>Boletín de la Sociedad Matemática Mexicana</title><addtitle>Bol. Soc. Mat. Mex</addtitle><description>In this paper, we introduce new types of χ , F -contraction mappings by involving rational expressions and establish two new fixed point theorems for this class of mappings in the setting of b -metric spaces. Furthermore, our results allow us to deduce, extend and improve some previous works in the existing literature. Along with these, some illustrative examples are also constructed in the support of our obtained fixed point theorems. As applications of our results, we investigate sufficient criteria for the existence and uniqueness of solution for certain types of nonlinear integral equations.</description><subject>Fixed points (mathematics)</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Original Article</subject><subject>Theorems</subject><issn>1405-213X</issn><issn>2296-4495</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkM1KAzEURoMoWLQv4Crg1mj-JplZSrVVKLjpwt2QpJk2pZ2kSQbFlTsfwAfzHXwSp47g6sK9h_vxHQAuCL4mGMubxHFRYYQpRRhzViBxBEaUVgJxXhXHYER6AFHCnk_BOKUNxpgQhgtcjMDb1L3aJQzetRnmtfXR7hJsfIRfH1dTdKdS-n7_nHUhK2h8m6My2fkW7lQIrl0l6Fqo0c7m6AxMQRmb4IvLa9jft86oA5xg9j2X7SqqLbT7btieg5NGbZMd_80zsJjeLyYPaP40e5zczlGQVKCy5EKUhFTcSI1VSbm1mlBZVoyLpayIoaJioiwbJpiVWjOruTRaS0lZ0Sh2Bi6HtyH6fWdTrje-i22fWFMhqKQlxaSn2EClEPteNv5TBNcHzfWgue4117-aa8F-ADiJck8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zahi, Ouanassa</creator><creator>Ramoul, Hichem</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0001-5074-3468</orcidid></search><sort><creationdate>2022</creationdate><title>Fixed point theorems for χ,F-Dass–Gupta contraction mappings in b-metric spaces with applications to integral equations</title><author>Zahi, Ouanassa ; Ramoul, Hichem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p726-8846681194c7b0a824eeb12789346d791c2693688f363e7bb3eb47cbb77235fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Fixed points (mathematics)</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Original Article</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahi, Ouanassa</creatorcontrib><creatorcontrib>Ramoul, Hichem</creatorcontrib><jtitle>Boletín de la Sociedad Matemática Mexicana</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahi, Ouanassa</au><au>Ramoul, Hichem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed point theorems for χ,F-Dass–Gupta contraction mappings in b-metric spaces with applications to integral equations</atitle><jtitle>Boletín de la Sociedad Matemática Mexicana</jtitle><stitle>Bol. Soc. Mat. Mex</stitle><date>2022</date><risdate>2022</risdate><volume>28</volume><issue>2</issue><issn>1405-213X</issn><eissn>2296-4495</eissn><abstract>In this paper, we introduce new types of χ , F -contraction mappings by involving rational expressions and establish two new fixed point theorems for this class of mappings in the setting of b -metric spaces. Furthermore, our results allow us to deduce, extend and improve some previous works in the existing literature. Along with these, some illustrative examples are also constructed in the support of our obtained fixed point theorems. As applications of our results, we investigate sufficient criteria for the existence and uniqueness of solution for certain types of nonlinear integral equations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40590-022-00435-6</doi><orcidid>https://orcid.org/0000-0001-5074-3468</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1405-213X
ispartof Boletín de la Sociedad Matemática Mexicana, 2022, Vol.28 (2)
issn 1405-213X
2296-4495
language eng
recordid cdi_proquest_journals_2662728201
source SpringerLink Journals - AutoHoldings
subjects Fixed points (mathematics)
Integral equations
Mathematical analysis
Mathematics
Mathematics and Statistics
Metric space
Original Article
Theorems
title Fixed point theorems for χ,F-Dass–Gupta contraction mappings in b-metric spaces with applications to integral equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed%20point%20theorems%20for%20%CF%87,F-Dass%E2%80%93Gupta%20contraction%20mappings%20in%20b-metric%20spaces%20with%20applications%20to%20integral%20equations&rft.jtitle=Bolet%C3%ADn%20de%20la%20Sociedad%20Matem%C3%A1tica%20Mexicana&rft.au=Zahi,%20Ouanassa&rft.date=2022&rft.volume=28&rft.issue=2&rft.issn=1405-213X&rft.eissn=2296-4495&rft_id=info:doi/10.1007/s40590-022-00435-6&rft_dat=%3Cproquest_sprin%3E2662728201%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662728201&rft_id=info:pmid/&rfr_iscdi=true