Fixed point theorems for χ,F-Dass–Gupta contraction mappings in b-metric spaces with applications to integral equations
In this paper, we introduce new types of χ , F -contraction mappings by involving rational expressions and establish two new fixed point theorems for this class of mappings in the setting of b -metric spaces. Furthermore, our results allow us to deduce, extend and improve some previous works in the...
Gespeichert in:
Veröffentlicht in: | Boletín de la Sociedad Matemática Mexicana 2022, Vol.28 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Boletín de la Sociedad Matemática Mexicana |
container_volume | 28 |
creator | Zahi, Ouanassa Ramoul, Hichem |
description | In this paper, we introduce new types of
χ
,
F
-contraction mappings by involving rational expressions and establish two new fixed point theorems for this class of mappings in the setting of
b
-metric spaces. Furthermore, our results allow us to deduce, extend and improve some previous works in the existing literature. Along with these, some illustrative examples are also constructed in the support of our obtained fixed point theorems. As applications of our results, we investigate sufficient criteria for the existence and uniqueness of solution for certain types of nonlinear integral equations. |
doi_str_mv | 10.1007/s40590-022-00435-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2662728201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2662728201</sourcerecordid><originalsourceid>FETCH-LOGICAL-p726-8846681194c7b0a824eeb12789346d791c2693688f363e7bb3eb47cbb77235fa3</originalsourceid><addsrcrecordid>eNpFkM1KAzEURoMoWLQv4Crg1mj-JplZSrVVKLjpwt2QpJk2pZ2kSQbFlTsfwAfzHXwSp47g6sK9h_vxHQAuCL4mGMubxHFRYYQpRRhzViBxBEaUVgJxXhXHYER6AFHCnk_BOKUNxpgQhgtcjMDb1L3aJQzetRnmtfXR7hJsfIRfH1dTdKdS-n7_nHUhK2h8m6My2fkW7lQIrl0l6Fqo0c7m6AxMQRmb4IvLa9jft86oA5xg9j2X7SqqLbT7btieg5NGbZMd_80zsJjeLyYPaP40e5zczlGQVKCy5EKUhFTcSI1VSbm1mlBZVoyLpayIoaJioiwbJpiVWjOruTRaS0lZ0Sh2Bi6HtyH6fWdTrje-i22fWFMhqKQlxaSn2EClEPteNv5TBNcHzfWgue4117-aa8F-ADiJck8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662728201</pqid></control><display><type>article</type><title>Fixed point theorems for χ,F-Dass–Gupta contraction mappings in b-metric spaces with applications to integral equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zahi, Ouanassa ; Ramoul, Hichem</creator><creatorcontrib>Zahi, Ouanassa ; Ramoul, Hichem</creatorcontrib><description>In this paper, we introduce new types of
χ
,
F
-contraction mappings by involving rational expressions and establish two new fixed point theorems for this class of mappings in the setting of
b
-metric spaces. Furthermore, our results allow us to deduce, extend and improve some previous works in the existing literature. Along with these, some illustrative examples are also constructed in the support of our obtained fixed point theorems. As applications of our results, we investigate sufficient criteria for the existence and uniqueness of solution for certain types of nonlinear integral equations.</description><identifier>ISSN: 1405-213X</identifier><identifier>EISSN: 2296-4495</identifier><identifier>DOI: 10.1007/s40590-022-00435-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Fixed points (mathematics) ; Integral equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Metric space ; Original Article ; Theorems</subject><ispartof>Boletín de la Sociedad Matemática Mexicana, 2022, Vol.28 (2)</ispartof><rights>Sociedad Matemática Mexicana 2022</rights><rights>Sociedad Matemática Mexicana 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p726-8846681194c7b0a824eeb12789346d791c2693688f363e7bb3eb47cbb77235fa3</cites><orcidid>0000-0001-5074-3468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40590-022-00435-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40590-022-00435-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zahi, Ouanassa</creatorcontrib><creatorcontrib>Ramoul, Hichem</creatorcontrib><title>Fixed point theorems for χ,F-Dass–Gupta contraction mappings in b-metric spaces with applications to integral equations</title><title>Boletín de la Sociedad Matemática Mexicana</title><addtitle>Bol. Soc. Mat. Mex</addtitle><description>In this paper, we introduce new types of
χ
,
F
-contraction mappings by involving rational expressions and establish two new fixed point theorems for this class of mappings in the setting of
b
-metric spaces. Furthermore, our results allow us to deduce, extend and improve some previous works in the existing literature. Along with these, some illustrative examples are also constructed in the support of our obtained fixed point theorems. As applications of our results, we investigate sufficient criteria for the existence and uniqueness of solution for certain types of nonlinear integral equations.</description><subject>Fixed points (mathematics)</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Original Article</subject><subject>Theorems</subject><issn>1405-213X</issn><issn>2296-4495</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkM1KAzEURoMoWLQv4Crg1mj-JplZSrVVKLjpwt2QpJk2pZ2kSQbFlTsfwAfzHXwSp47g6sK9h_vxHQAuCL4mGMubxHFRYYQpRRhzViBxBEaUVgJxXhXHYER6AFHCnk_BOKUNxpgQhgtcjMDb1L3aJQzetRnmtfXR7hJsfIRfH1dTdKdS-n7_nHUhK2h8m6My2fkW7lQIrl0l6Fqo0c7m6AxMQRmb4IvLa9jft86oA5xg9j2X7SqqLbT7btieg5NGbZMd_80zsJjeLyYPaP40e5zczlGQVKCy5EKUhFTcSI1VSbm1mlBZVoyLpayIoaJioiwbJpiVWjOruTRaS0lZ0Sh2Bi6HtyH6fWdTrje-i22fWFMhqKQlxaSn2EClEPteNv5TBNcHzfWgue4117-aa8F-ADiJck8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zahi, Ouanassa</creator><creator>Ramoul, Hichem</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0001-5074-3468</orcidid></search><sort><creationdate>2022</creationdate><title>Fixed point theorems for χ,F-Dass–Gupta contraction mappings in b-metric spaces with applications to integral equations</title><author>Zahi, Ouanassa ; Ramoul, Hichem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p726-8846681194c7b0a824eeb12789346d791c2693688f363e7bb3eb47cbb77235fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Fixed points (mathematics)</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Original Article</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahi, Ouanassa</creatorcontrib><creatorcontrib>Ramoul, Hichem</creatorcontrib><jtitle>Boletín de la Sociedad Matemática Mexicana</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahi, Ouanassa</au><au>Ramoul, Hichem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed point theorems for χ,F-Dass–Gupta contraction mappings in b-metric spaces with applications to integral equations</atitle><jtitle>Boletín de la Sociedad Matemática Mexicana</jtitle><stitle>Bol. Soc. Mat. Mex</stitle><date>2022</date><risdate>2022</risdate><volume>28</volume><issue>2</issue><issn>1405-213X</issn><eissn>2296-4495</eissn><abstract>In this paper, we introduce new types of
χ
,
F
-contraction mappings by involving rational expressions and establish two new fixed point theorems for this class of mappings in the setting of
b
-metric spaces. Furthermore, our results allow us to deduce, extend and improve some previous works in the existing literature. Along with these, some illustrative examples are also constructed in the support of our obtained fixed point theorems. As applications of our results, we investigate sufficient criteria for the existence and uniqueness of solution for certain types of nonlinear integral equations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40590-022-00435-6</doi><orcidid>https://orcid.org/0000-0001-5074-3468</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1405-213X |
ispartof | Boletín de la Sociedad Matemática Mexicana, 2022, Vol.28 (2) |
issn | 1405-213X 2296-4495 |
language | eng |
recordid | cdi_proquest_journals_2662728201 |
source | SpringerLink Journals - AutoHoldings |
subjects | Fixed points (mathematics) Integral equations Mathematical analysis Mathematics Mathematics and Statistics Metric space Original Article Theorems |
title | Fixed point theorems for χ,F-Dass–Gupta contraction mappings in b-metric spaces with applications to integral equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed%20point%20theorems%20for%20%CF%87,F-Dass%E2%80%93Gupta%20contraction%20mappings%20in%20b-metric%20spaces%20with%20applications%20to%20integral%20equations&rft.jtitle=Bolet%C3%ADn%20de%20la%20Sociedad%20Matem%C3%A1tica%20Mexicana&rft.au=Zahi,%20Ouanassa&rft.date=2022&rft.volume=28&rft.issue=2&rft.issn=1405-213X&rft.eissn=2296-4495&rft_id=info:doi/10.1007/s40590-022-00435-6&rft_dat=%3Cproquest_sprin%3E2662728201%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662728201&rft_id=info:pmid/&rfr_iscdi=true |