A modular framework for distributed model predictive control of nonlinear continuous-time systems (GRAMPC-D)

The modular open-source framework GRAMPC-D for model predictive control of distributed systems is presented in this paper. The modular concept allows to solve optimal control problems in a centralized and distributed fashion using the same problem description. It is tailored to computational efficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization and engineering 2022, Vol.23 (2), p.771-795
Hauptverfasser: Burk, Daniel, Völz, Andreas, Graichen, Knut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 795
container_issue 2
container_start_page 771
container_title Optimization and engineering
container_volume 23
creator Burk, Daniel
Völz, Andreas
Graichen, Knut
description The modular open-source framework GRAMPC-D for model predictive control of distributed systems is presented in this paper. The modular concept allows to solve optimal control problems in a centralized and distributed fashion using the same problem description. It is tailored to computational efficiency with the focus on embedded hardware. The distributed solution is based on the alternating direction method of multipliers and uses the concept of neighbor approximation to enhance convergence speed. The presented framework can be accessed through C++ and Python and also supports plug-and-play and data exchange between agents over a network.
doi_str_mv 10.1007/s11081-021-09605-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2662726406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2662726406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-46c01a0f7597f7651d4df03eb2b612e09234430932686b5a093b07b5815d1b003</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRsFb_gKuAG11Eb54zsyxVq1BRRNdhHomkzkxqklH6702t4M7F5R4u55wLX5adErgkAPlVIAQKgoGmKSUIzPayCRE5w7SkfD9pVpSYcwqH2VEIKwAiBS0mWTdDvWvHrvLI-KrXX86_I-M8am2I3tZj1O3WoTu09rq1TbSfGjVuiN51yBk0uKGzg0757dEOoxsDjrbXKGxC1H1A54vn2cPTHF9fHGcHpuqCPvnd0-z19uZlfoeXj4v7-WyJGyZZxFw2QCowuShzk0tBWt4aYLqmtSRUQ0kZ5wxKRmUha1ElVUNei4KIltQAbJqd7XrX3n2MOkS1cqMf0ktFpaQ5lRxkctGdq_EuBK-NWnvbV36jCKgtVbWjqhJV9UNVsRRiu1BI5uFN-7_qf1LfWl55nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662726406</pqid></control><display><type>article</type><title>A modular framework for distributed model predictive control of nonlinear continuous-time systems (GRAMPC-D)</title><source>SpringerNature Journals</source><creator>Burk, Daniel ; Völz, Andreas ; Graichen, Knut</creator><creatorcontrib>Burk, Daniel ; Völz, Andreas ; Graichen, Knut</creatorcontrib><description>The modular open-source framework GRAMPC-D for model predictive control of distributed systems is presented in this paper. The modular concept allows to solve optimal control problems in a centralized and distributed fashion using the same problem description. It is tailored to computational efficiency with the focus on embedded hardware. The distributed solution is based on the alternating direction method of multipliers and uses the concept of neighbor approximation to enhance convergence speed. The presented framework can be accessed through C++ and Python and also supports plug-and-play and data exchange between agents over a network.</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-021-09605-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer networks ; Continuous time systems ; Control ; Control systems ; Data exchange ; Engineering ; Environmental Management ; Financial Engineering ; Mathematics ; Mathematics and Statistics ; Modular systems ; Nonlinear control ; Nonlinear systems ; Operations Research/Decision Theory ; Optimal control ; Optimization ; Predictive control ; Research Article ; Systems Theory</subject><ispartof>Optimization and engineering, 2022, Vol.23 (2), p.771-795</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-46c01a0f7597f7651d4df03eb2b612e09234430932686b5a093b07b5815d1b003</citedby><cites>FETCH-LOGICAL-c363t-46c01a0f7597f7651d4df03eb2b612e09234430932686b5a093b07b5815d1b003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11081-021-09605-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11081-021-09605-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Burk, Daniel</creatorcontrib><creatorcontrib>Völz, Andreas</creatorcontrib><creatorcontrib>Graichen, Knut</creatorcontrib><title>A modular framework for distributed model predictive control of nonlinear continuous-time systems (GRAMPC-D)</title><title>Optimization and engineering</title><addtitle>Optim Eng</addtitle><description>The modular open-source framework GRAMPC-D for model predictive control of distributed systems is presented in this paper. The modular concept allows to solve optimal control problems in a centralized and distributed fashion using the same problem description. It is tailored to computational efficiency with the focus on embedded hardware. The distributed solution is based on the alternating direction method of multipliers and uses the concept of neighbor approximation to enhance convergence speed. The presented framework can be accessed through C++ and Python and also supports plug-and-play and data exchange between agents over a network.</description><subject>Computer networks</subject><subject>Continuous time systems</subject><subject>Control</subject><subject>Control systems</subject><subject>Data exchange</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Financial Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modular systems</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Operations Research/Decision Theory</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Research Article</subject><subject>Systems Theory</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhQdRsFb_gKuAG11Eb54zsyxVq1BRRNdhHomkzkxqklH6702t4M7F5R4u55wLX5adErgkAPlVIAQKgoGmKSUIzPayCRE5w7SkfD9pVpSYcwqH2VEIKwAiBS0mWTdDvWvHrvLI-KrXX86_I-M8am2I3tZj1O3WoTu09rq1TbSfGjVuiN51yBk0uKGzg0757dEOoxsDjrbXKGxC1H1A54vn2cPTHF9fHGcHpuqCPvnd0-z19uZlfoeXj4v7-WyJGyZZxFw2QCowuShzk0tBWt4aYLqmtSRUQ0kZ5wxKRmUha1ElVUNei4KIltQAbJqd7XrX3n2MOkS1cqMf0ktFpaQ5lRxkctGdq_EuBK-NWnvbV36jCKgtVbWjqhJV9UNVsRRiu1BI5uFN-7_qf1LfWl55nA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Burk, Daniel</creator><creator>Völz, Andreas</creator><creator>Graichen, Knut</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>2022</creationdate><title>A modular framework for distributed model predictive control of nonlinear continuous-time systems (GRAMPC-D)</title><author>Burk, Daniel ; Völz, Andreas ; Graichen, Knut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-46c01a0f7597f7651d4df03eb2b612e09234430932686b5a093b07b5815d1b003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer networks</topic><topic>Continuous time systems</topic><topic>Control</topic><topic>Control systems</topic><topic>Data exchange</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Financial Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modular systems</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Operations Research/Decision Theory</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Research Article</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burk, Daniel</creatorcontrib><creatorcontrib>Völz, Andreas</creatorcontrib><creatorcontrib>Graichen, Knut</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burk, Daniel</au><au>Völz, Andreas</au><au>Graichen, Knut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modular framework for distributed model predictive control of nonlinear continuous-time systems (GRAMPC-D)</atitle><jtitle>Optimization and engineering</jtitle><stitle>Optim Eng</stitle><date>2022</date><risdate>2022</risdate><volume>23</volume><issue>2</issue><spage>771</spage><epage>795</epage><pages>771-795</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>The modular open-source framework GRAMPC-D for model predictive control of distributed systems is presented in this paper. The modular concept allows to solve optimal control problems in a centralized and distributed fashion using the same problem description. It is tailored to computational efficiency with the focus on embedded hardware. The distributed solution is based on the alternating direction method of multipliers and uses the concept of neighbor approximation to enhance convergence speed. The presented framework can be accessed through C++ and Python and also supports plug-and-play and data exchange between agents over a network.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11081-021-09605-3</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1389-4420
ispartof Optimization and engineering, 2022, Vol.23 (2), p.771-795
issn 1389-4420
1573-2924
language eng
recordid cdi_proquest_journals_2662726406
source SpringerNature Journals
subjects Computer networks
Continuous time systems
Control
Control systems
Data exchange
Engineering
Environmental Management
Financial Engineering
Mathematics
Mathematics and Statistics
Modular systems
Nonlinear control
Nonlinear systems
Operations Research/Decision Theory
Optimal control
Optimization
Predictive control
Research Article
Systems Theory
title A modular framework for distributed model predictive control of nonlinear continuous-time systems (GRAMPC-D)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modular%20framework%20for%20distributed%20model%20predictive%20control%20of%20nonlinear%20continuous-time%20systems%20(GRAMPC-D)&rft.jtitle=Optimization%20and%20engineering&rft.au=Burk,%20Daniel&rft.date=2022&rft.volume=23&rft.issue=2&rft.spage=771&rft.epage=795&rft.pages=771-795&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-021-09605-3&rft_dat=%3Cproquest_cross%3E2662726406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662726406&rft_id=info:pmid/&rfr_iscdi=true