A modular framework for distributed model predictive control of nonlinear continuous-time systems (GRAMPC-D)
The modular open-source framework GRAMPC-D for model predictive control of distributed systems is presented in this paper. The modular concept allows to solve optimal control problems in a centralized and distributed fashion using the same problem description. It is tailored to computational efficie...
Gespeichert in:
Veröffentlicht in: | Optimization and engineering 2022, Vol.23 (2), p.771-795 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 795 |
---|---|
container_issue | 2 |
container_start_page | 771 |
container_title | Optimization and engineering |
container_volume | 23 |
creator | Burk, Daniel Völz, Andreas Graichen, Knut |
description | The modular open-source framework GRAMPC-D for model predictive control of distributed systems is presented in this paper. The modular concept allows to solve optimal control problems in a centralized and distributed fashion using the same problem description. It is tailored to computational efficiency with the focus on embedded hardware. The distributed solution is based on the alternating direction method of multipliers and uses the concept of neighbor approximation to enhance convergence speed. The presented framework can be accessed through C++ and Python and also supports plug-and-play and data exchange between agents over a network. |
doi_str_mv | 10.1007/s11081-021-09605-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2662726406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2662726406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-46c01a0f7597f7651d4df03eb2b612e09234430932686b5a093b07b5815d1b003</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRsFb_gKuAG11Eb54zsyxVq1BRRNdhHomkzkxqklH6702t4M7F5R4u55wLX5adErgkAPlVIAQKgoGmKSUIzPayCRE5w7SkfD9pVpSYcwqH2VEIKwAiBS0mWTdDvWvHrvLI-KrXX86_I-M8am2I3tZj1O3WoTu09rq1TbSfGjVuiN51yBk0uKGzg0757dEOoxsDjrbXKGxC1H1A54vn2cPTHF9fHGcHpuqCPvnd0-z19uZlfoeXj4v7-WyJGyZZxFw2QCowuShzk0tBWt4aYLqmtSRUQ0kZ5wxKRmUha1ElVUNei4KIltQAbJqd7XrX3n2MOkS1cqMf0ktFpaQ5lRxkctGdq_EuBK-NWnvbV36jCKgtVbWjqhJV9UNVsRRiu1BI5uFN-7_qf1LfWl55nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662726406</pqid></control><display><type>article</type><title>A modular framework for distributed model predictive control of nonlinear continuous-time systems (GRAMPC-D)</title><source>SpringerNature Journals</source><creator>Burk, Daniel ; Völz, Andreas ; Graichen, Knut</creator><creatorcontrib>Burk, Daniel ; Völz, Andreas ; Graichen, Knut</creatorcontrib><description>The modular open-source framework GRAMPC-D for model predictive control of distributed systems is presented in this paper. The modular concept allows to solve optimal control problems in a centralized and distributed fashion using the same problem description. It is tailored to computational efficiency with the focus on embedded hardware. The distributed solution is based on the alternating direction method of multipliers and uses the concept of neighbor approximation to enhance convergence speed. The presented framework can be accessed through C++ and Python and also supports plug-and-play and data exchange between agents over a network.</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-021-09605-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer networks ; Continuous time systems ; Control ; Control systems ; Data exchange ; Engineering ; Environmental Management ; Financial Engineering ; Mathematics ; Mathematics and Statistics ; Modular systems ; Nonlinear control ; Nonlinear systems ; Operations Research/Decision Theory ; Optimal control ; Optimization ; Predictive control ; Research Article ; Systems Theory</subject><ispartof>Optimization and engineering, 2022, Vol.23 (2), p.771-795</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-46c01a0f7597f7651d4df03eb2b612e09234430932686b5a093b07b5815d1b003</citedby><cites>FETCH-LOGICAL-c363t-46c01a0f7597f7651d4df03eb2b612e09234430932686b5a093b07b5815d1b003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11081-021-09605-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11081-021-09605-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Burk, Daniel</creatorcontrib><creatorcontrib>Völz, Andreas</creatorcontrib><creatorcontrib>Graichen, Knut</creatorcontrib><title>A modular framework for distributed model predictive control of nonlinear continuous-time systems (GRAMPC-D)</title><title>Optimization and engineering</title><addtitle>Optim Eng</addtitle><description>The modular open-source framework GRAMPC-D for model predictive control of distributed systems is presented in this paper. The modular concept allows to solve optimal control problems in a centralized and distributed fashion using the same problem description. It is tailored to computational efficiency with the focus on embedded hardware. The distributed solution is based on the alternating direction method of multipliers and uses the concept of neighbor approximation to enhance convergence speed. The presented framework can be accessed through C++ and Python and also supports plug-and-play and data exchange between agents over a network.</description><subject>Computer networks</subject><subject>Continuous time systems</subject><subject>Control</subject><subject>Control systems</subject><subject>Data exchange</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Financial Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modular systems</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Operations Research/Decision Theory</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Research Article</subject><subject>Systems Theory</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhQdRsFb_gKuAG11Eb54zsyxVq1BRRNdhHomkzkxqklH6702t4M7F5R4u55wLX5adErgkAPlVIAQKgoGmKSUIzPayCRE5w7SkfD9pVpSYcwqH2VEIKwAiBS0mWTdDvWvHrvLI-KrXX86_I-M8am2I3tZj1O3WoTu09rq1TbSfGjVuiN51yBk0uKGzg0757dEOoxsDjrbXKGxC1H1A54vn2cPTHF9fHGcHpuqCPvnd0-z19uZlfoeXj4v7-WyJGyZZxFw2QCowuShzk0tBWt4aYLqmtSRUQ0kZ5wxKRmUha1ElVUNei4KIltQAbJqd7XrX3n2MOkS1cqMf0ktFpaQ5lRxkctGdq_EuBK-NWnvbV36jCKgtVbWjqhJV9UNVsRRiu1BI5uFN-7_qf1LfWl55nA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Burk, Daniel</creator><creator>Völz, Andreas</creator><creator>Graichen, Knut</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>2022</creationdate><title>A modular framework for distributed model predictive control of nonlinear continuous-time systems (GRAMPC-D)</title><author>Burk, Daniel ; Völz, Andreas ; Graichen, Knut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-46c01a0f7597f7651d4df03eb2b612e09234430932686b5a093b07b5815d1b003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer networks</topic><topic>Continuous time systems</topic><topic>Control</topic><topic>Control systems</topic><topic>Data exchange</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Financial Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modular systems</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Operations Research/Decision Theory</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Research Article</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burk, Daniel</creatorcontrib><creatorcontrib>Völz, Andreas</creatorcontrib><creatorcontrib>Graichen, Knut</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burk, Daniel</au><au>Völz, Andreas</au><au>Graichen, Knut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modular framework for distributed model predictive control of nonlinear continuous-time systems (GRAMPC-D)</atitle><jtitle>Optimization and engineering</jtitle><stitle>Optim Eng</stitle><date>2022</date><risdate>2022</risdate><volume>23</volume><issue>2</issue><spage>771</spage><epage>795</epage><pages>771-795</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>The modular open-source framework GRAMPC-D for model predictive control of distributed systems is presented in this paper. The modular concept allows to solve optimal control problems in a centralized and distributed fashion using the same problem description. It is tailored to computational efficiency with the focus on embedded hardware. The distributed solution is based on the alternating direction method of multipliers and uses the concept of neighbor approximation to enhance convergence speed. The presented framework can be accessed through C++ and Python and also supports plug-and-play and data exchange between agents over a network.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11081-021-09605-3</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-4420 |
ispartof | Optimization and engineering, 2022, Vol.23 (2), p.771-795 |
issn | 1389-4420 1573-2924 |
language | eng |
recordid | cdi_proquest_journals_2662726406 |
source | SpringerNature Journals |
subjects | Computer networks Continuous time systems Control Control systems Data exchange Engineering Environmental Management Financial Engineering Mathematics Mathematics and Statistics Modular systems Nonlinear control Nonlinear systems Operations Research/Decision Theory Optimal control Optimization Predictive control Research Article Systems Theory |
title | A modular framework for distributed model predictive control of nonlinear continuous-time systems (GRAMPC-D) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modular%20framework%20for%20distributed%20model%20predictive%20control%20of%20nonlinear%20continuous-time%20systems%20(GRAMPC-D)&rft.jtitle=Optimization%20and%20engineering&rft.au=Burk,%20Daniel&rft.date=2022&rft.volume=23&rft.issue=2&rft.spage=771&rft.epage=795&rft.pages=771-795&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-021-09605-3&rft_dat=%3Cproquest_cross%3E2662726406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662726406&rft_id=info:pmid/&rfr_iscdi=true |