Improved multispecies Dougherty collisions

The Dougherty model Fokker–Planck operator is extended to describe nonlinear full-$f$ ( f is the distribution function) collisions between multiple species in plasmas. Simple relations for cross-species primitive moments are developed which obey conservation laws, and reproduce familiar velocity and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plasma physics 2022-06, Vol.88 (3), Article 905880303
Hauptverfasser: Francisquez, Manaure, Juno, James, Hakim, Ammar, Hammett, Gregory W., Ernst, Darin R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of plasma physics
container_volume 88
creator Francisquez, Manaure
Juno, James
Hakim, Ammar
Hammett, Gregory W.
Ernst, Darin R.
description The Dougherty model Fokker–Planck operator is extended to describe nonlinear full-$f$ ( f is the distribution function) collisions between multiple species in plasmas. Simple relations for cross-species primitive moments are developed which obey conservation laws, and reproduce familiar velocity and temperature relaxation rates. This treatment of multispecies Dougherty collisions, valid for arbitrary mass ratios, avoids unphysical temperatures and satisfies the $H$-theorem (H is related to the entropy) unlike an analogous Bhatnagar–Gross–Krook operator. Formulas for both a Cartesian velocity space and a gyroaveraged operator are provided for use in Vlasov as well as long-wavelength gyrokinetic models. We present an algorithm for the discontinuous Galerkin discretization of this operator, and provide results from relaxation and Landau damping benchmarks.
doi_str_mv 10.1017/S0022377822000289
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2662418080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377822000289</cupid><sourcerecordid>2662418080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-6823c21cf43a3818e2e39fae1be9b807df2e139eec40861fdef4925c119e55963</originalsourceid><addsrcrecordid>eNp1UMtKw0AUHUTBWP0AdwF3QnTuTDKPpVSrhYILdT0kkzs1JWnqTCL0753QggtxdQ-cxz0cQq6B3gEFef9GKWNcSsUYjVDpE5JALnQmFZWnJJnobOLPyUUIm6jhlMmE3C67ne-_sU67sR2asEPbYEgf-3H9iX7Yp7Zv2yY0_TZckjNXtgGvjndGPhZP7_OXbPX6vJw_rDLLQQ6ZUIxbBtblvOQKFDLk2pUIFeoqlqkdQ-Aa0eZUCXA1ulyzwgJoLAot-IzcHHJjsa8Rw2A2_ei38aVhQrAcFFU0quCgsr4PwaMzO990pd8boGaaxPyZJHr40VN2lW_qNf5G_-_6AfMyYdU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662418080</pqid></control><display><type>article</type><title>Improved multispecies Dougherty collisions</title><source>Cambridge Journals Online</source><creator>Francisquez, Manaure ; Juno, James ; Hakim, Ammar ; Hammett, Gregory W. ; Ernst, Darin R.</creator><creatorcontrib>Francisquez, Manaure ; Juno, James ; Hakim, Ammar ; Hammett, Gregory W. ; Ernst, Darin R.</creatorcontrib><description>The Dougherty model Fokker–Planck operator is extended to describe nonlinear full-$f$ ( f is the distribution function) collisions between multiple species in plasmas. Simple relations for cross-species primitive moments are developed which obey conservation laws, and reproduce familiar velocity and temperature relaxation rates. This treatment of multispecies Dougherty collisions, valid for arbitrary mass ratios, avoids unphysical temperatures and satisfies the $H$-theorem (H is related to the entropy) unlike an analogous Bhatnagar–Gross–Krook operator. Formulas for both a Cartesian velocity space and a gyroaveraged operator are provided for use in Vlasov as well as long-wavelength gyrokinetic models. We present an algorithm for the discontinuous Galerkin discretization of this operator, and provide results from relaxation and Landau damping benchmarks.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377822000289</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algorithms ; Benchmarks ; Cartesian coordinates ; Collisions ; Conservation laws ; Distribution functions ; Flow velocity ; Laboratories ; Landau damping ; Mass ratios ; Operators (mathematics) ; Physics ; Plasma ; Plasma physics ; Plasmas (physics)</subject><ispartof>Journal of plasma physics, 2022-06, Vol.88 (3), Article 905880303</ispartof><rights>Copyright © The Author(s), 2022. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-6823c21cf43a3818e2e39fae1be9b807df2e139eec40861fdef4925c119e55963</citedby><cites>FETCH-LOGICAL-c317t-6823c21cf43a3818e2e39fae1be9b807df2e139eec40861fdef4925c119e55963</cites><orcidid>0000-0002-8247-3770 ; 0000-0003-1495-6647 ; 0000-0002-9577-2809 ; 0000-0001-6835-273X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377822000289/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Francisquez, Manaure</creatorcontrib><creatorcontrib>Juno, James</creatorcontrib><creatorcontrib>Hakim, Ammar</creatorcontrib><creatorcontrib>Hammett, Gregory W.</creatorcontrib><creatorcontrib>Ernst, Darin R.</creatorcontrib><title>Improved multispecies Dougherty collisions</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>The Dougherty model Fokker–Planck operator is extended to describe nonlinear full-$f$ ( f is the distribution function) collisions between multiple species in plasmas. Simple relations for cross-species primitive moments are developed which obey conservation laws, and reproduce familiar velocity and temperature relaxation rates. This treatment of multispecies Dougherty collisions, valid for arbitrary mass ratios, avoids unphysical temperatures and satisfies the $H$-theorem (H is related to the entropy) unlike an analogous Bhatnagar–Gross–Krook operator. Formulas for both a Cartesian velocity space and a gyroaveraged operator are provided for use in Vlasov as well as long-wavelength gyrokinetic models. We present an algorithm for the discontinuous Galerkin discretization of this operator, and provide results from relaxation and Landau damping benchmarks.</description><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Cartesian coordinates</subject><subject>Collisions</subject><subject>Conservation laws</subject><subject>Distribution functions</subject><subject>Flow velocity</subject><subject>Laboratories</subject><subject>Landau damping</subject><subject>Mass ratios</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Plasma</subject><subject>Plasma physics</subject><subject>Plasmas (physics)</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtKw0AUHUTBWP0AdwF3QnTuTDKPpVSrhYILdT0kkzs1JWnqTCL0753QggtxdQ-cxz0cQq6B3gEFef9GKWNcSsUYjVDpE5JALnQmFZWnJJnobOLPyUUIm6jhlMmE3C67ne-_sU67sR2asEPbYEgf-3H9iX7Yp7Zv2yY0_TZckjNXtgGvjndGPhZP7_OXbPX6vJw_rDLLQQ6ZUIxbBtblvOQKFDLk2pUIFeoqlqkdQ-Aa0eZUCXA1ulyzwgJoLAot-IzcHHJjsa8Rw2A2_ei38aVhQrAcFFU0quCgsr4PwaMzO990pd8boGaaxPyZJHr40VN2lW_qNf5G_-_6AfMyYdU</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Francisquez, Manaure</creator><creator>Juno, James</creator><creator>Hakim, Ammar</creator><creator>Hammett, Gregory W.</creator><creator>Ernst, Darin R.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8247-3770</orcidid><orcidid>https://orcid.org/0000-0003-1495-6647</orcidid><orcidid>https://orcid.org/0000-0002-9577-2809</orcidid><orcidid>https://orcid.org/0000-0001-6835-273X</orcidid></search><sort><creationdate>20220601</creationdate><title>Improved multispecies Dougherty collisions</title><author>Francisquez, Manaure ; Juno, James ; Hakim, Ammar ; Hammett, Gregory W. ; Ernst, Darin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-6823c21cf43a3818e2e39fae1be9b807df2e139eec40861fdef4925c119e55963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Cartesian coordinates</topic><topic>Collisions</topic><topic>Conservation laws</topic><topic>Distribution functions</topic><topic>Flow velocity</topic><topic>Laboratories</topic><topic>Landau damping</topic><topic>Mass ratios</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Plasma</topic><topic>Plasma physics</topic><topic>Plasmas (physics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Francisquez, Manaure</creatorcontrib><creatorcontrib>Juno, James</creatorcontrib><creatorcontrib>Hakim, Ammar</creatorcontrib><creatorcontrib>Hammett, Gregory W.</creatorcontrib><creatorcontrib>Ernst, Darin R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francisquez, Manaure</au><au>Juno, James</au><au>Hakim, Ammar</au><au>Hammett, Gregory W.</au><au>Ernst, Darin R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved multispecies Dougherty collisions</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>88</volume><issue>3</issue><artnum>905880303</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>The Dougherty model Fokker–Planck operator is extended to describe nonlinear full-$f$ ( f is the distribution function) collisions between multiple species in plasmas. Simple relations for cross-species primitive moments are developed which obey conservation laws, and reproduce familiar velocity and temperature relaxation rates. This treatment of multispecies Dougherty collisions, valid for arbitrary mass ratios, avoids unphysical temperatures and satisfies the $H$-theorem (H is related to the entropy) unlike an analogous Bhatnagar–Gross–Krook operator. Formulas for both a Cartesian velocity space and a gyroaveraged operator are provided for use in Vlasov as well as long-wavelength gyrokinetic models. We present an algorithm for the discontinuous Galerkin discretization of this operator, and provide results from relaxation and Landau damping benchmarks.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377822000289</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-8247-3770</orcidid><orcidid>https://orcid.org/0000-0003-1495-6647</orcidid><orcidid>https://orcid.org/0000-0002-9577-2809</orcidid><orcidid>https://orcid.org/0000-0001-6835-273X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3778
ispartof Journal of plasma physics, 2022-06, Vol.88 (3), Article 905880303
issn 0022-3778
1469-7807
language eng
recordid cdi_proquest_journals_2662418080
source Cambridge Journals Online
subjects Algorithms
Benchmarks
Cartesian coordinates
Collisions
Conservation laws
Distribution functions
Flow velocity
Laboratories
Landau damping
Mass ratios
Operators (mathematics)
Physics
Plasma
Plasma physics
Plasmas (physics)
title Improved multispecies Dougherty collisions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20multispecies%20Dougherty%20collisions&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Francisquez,%20Manaure&rft.date=2022-06-01&rft.volume=88&rft.issue=3&rft.artnum=905880303&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377822000289&rft_dat=%3Cproquest_cross%3E2662418080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662418080&rft_id=info:pmid/&rft_cupid=10_1017_S0022377822000289&rfr_iscdi=true