Motor-driven advection competes with crowding to drive spatiotemporally heterogeneous transport in cytoskeleton composites

The cytoskeleton -- a composite network of biopolymers, molecular motors, and associated binding proteins -- is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-05
Hauptverfasser: Sheung, Janet Y, Garamella, Jonathan, Kahl, Stella K, Lee, Brian Y, McGorty, Ryan J, Robertson-Anderson, Rae M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sheung, Janet Y
Garamella, Jonathan
Kahl, Stella K
Lee, Brian Y
McGorty, Ryan J
Robertson-Anderson, Rae M
description The cytoskeleton -- a composite network of biopolymers, molecular motors, and associated binding proteins -- is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties -- ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems -- remains challenging. Here, we combine light sheet microscopy with differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly, while higher actomyosin content enhances superdiffusivity, it also markedly increases the degree of subdiffusion at short timescales and generally slows transport. Corresponding displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero modes, indicative of directed advection coupled with caged diffusion and hopping. At larger spatiotemporal scales, particles undergo superdiffusion which generally increases with actomyosin content, in contrast to normal, yet faster, diffusion without actomyosin. Our specific results shed important new light on the interplay between non-equilibrium processes, crowding and heterogeneity in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter systems to elucidate transport and dynamics across scales.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2662171864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2662171864</sourcerecordid><originalsourceid>FETCH-proquest_journals_26621718643</originalsourceid><addsrcrecordid>eNqNzMEKgkAQxvElCIrqHQY6C7qado-iS7fusuhkW7pjO2NhT98SPUCn7_D9-E_UXKdpEm0zrWdqxXyL41jnhd5s0rl6n0jIR7W3T3Rg6idWYslBRV2PggwvK1eoPL1q6xoQgi8F7k1wgl1P3rTtCNegPTXokAYG8cZxuARsaI1CfMcW5RcmtiG9VNOLaRlXv12o9WF_3h2j3tNjQJbyRoN34Sp1nuukSLZ5lv6nPqhYUVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662171864</pqid></control><display><type>article</type><title>Motor-driven advection competes with crowding to drive spatiotemporally heterogeneous transport in cytoskeleton composites</title><source>Freely Accessible Journals</source><creator>Sheung, Janet Y ; Garamella, Jonathan ; Kahl, Stella K ; Lee, Brian Y ; McGorty, Ryan J ; Robertson-Anderson, Rae M</creator><creatorcontrib>Sheung, Janet Y ; Garamella, Jonathan ; Kahl, Stella K ; Lee, Brian Y ; McGorty, Ryan J ; Robertson-Anderson, Rae M</creatorcontrib><description>The cytoskeleton -- a composite network of biopolymers, molecular motors, and associated binding proteins -- is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties -- ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems -- remains challenging. Here, we combine light sheet microscopy with differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly, while higher actomyosin content enhances superdiffusivity, it also markedly increases the degree of subdiffusion at short timescales and generally slows transport. Corresponding displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero modes, indicative of directed advection coupled with caged diffusion and hopping. At larger spatiotemporal scales, particles undergo superdiffusion which generally increases with actomyosin content, in contrast to normal, yet faster, diffusion without actomyosin. Our specific results shed important new light on the interplay between non-equilibrium processes, crowding and heterogeneity in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter systems to elucidate transport and dynamics across scales.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Actomyosin ; Advection ; Biopolymers ; Crowding ; Cytoskeleton ; Diffusion rate ; Heterogeneity ; Light sheets ; Microscopy ; Molecular motors ; Particle tracking ; Particulate composites</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Sheung, Janet Y</creatorcontrib><creatorcontrib>Garamella, Jonathan</creatorcontrib><creatorcontrib>Kahl, Stella K</creatorcontrib><creatorcontrib>Lee, Brian Y</creatorcontrib><creatorcontrib>McGorty, Ryan J</creatorcontrib><creatorcontrib>Robertson-Anderson, Rae M</creatorcontrib><title>Motor-driven advection competes with crowding to drive spatiotemporally heterogeneous transport in cytoskeleton composites</title><title>arXiv.org</title><description>The cytoskeleton -- a composite network of biopolymers, molecular motors, and associated binding proteins -- is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties -- ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems -- remains challenging. Here, we combine light sheet microscopy with differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly, while higher actomyosin content enhances superdiffusivity, it also markedly increases the degree of subdiffusion at short timescales and generally slows transport. Corresponding displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero modes, indicative of directed advection coupled with caged diffusion and hopping. At larger spatiotemporal scales, particles undergo superdiffusion which generally increases with actomyosin content, in contrast to normal, yet faster, diffusion without actomyosin. Our specific results shed important new light on the interplay between non-equilibrium processes, crowding and heterogeneity in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter systems to elucidate transport and dynamics across scales.</description><subject>Actomyosin</subject><subject>Advection</subject><subject>Biopolymers</subject><subject>Crowding</subject><subject>Cytoskeleton</subject><subject>Diffusion rate</subject><subject>Heterogeneity</subject><subject>Light sheets</subject><subject>Microscopy</subject><subject>Molecular motors</subject><subject>Particle tracking</subject><subject>Particulate composites</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzMEKgkAQxvElCIrqHQY6C7qado-iS7fusuhkW7pjO2NhT98SPUCn7_D9-E_UXKdpEm0zrWdqxXyL41jnhd5s0rl6n0jIR7W3T3Rg6idWYslBRV2PggwvK1eoPL1q6xoQgi8F7k1wgl1P3rTtCNegPTXokAYG8cZxuARsaI1CfMcW5RcmtiG9VNOLaRlXv12o9WF_3h2j3tNjQJbyRoN34Sp1nuukSLZ5lv6nPqhYUVI</recordid><startdate>20220509</startdate><enddate>20220509</enddate><creator>Sheung, Janet Y</creator><creator>Garamella, Jonathan</creator><creator>Kahl, Stella K</creator><creator>Lee, Brian Y</creator><creator>McGorty, Ryan J</creator><creator>Robertson-Anderson, Rae M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220509</creationdate><title>Motor-driven advection competes with crowding to drive spatiotemporally heterogeneous transport in cytoskeleton composites</title><author>Sheung, Janet Y ; Garamella, Jonathan ; Kahl, Stella K ; Lee, Brian Y ; McGorty, Ryan J ; Robertson-Anderson, Rae M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26621718643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actomyosin</topic><topic>Advection</topic><topic>Biopolymers</topic><topic>Crowding</topic><topic>Cytoskeleton</topic><topic>Diffusion rate</topic><topic>Heterogeneity</topic><topic>Light sheets</topic><topic>Microscopy</topic><topic>Molecular motors</topic><topic>Particle tracking</topic><topic>Particulate composites</topic><toplevel>online_resources</toplevel><creatorcontrib>Sheung, Janet Y</creatorcontrib><creatorcontrib>Garamella, Jonathan</creatorcontrib><creatorcontrib>Kahl, Stella K</creatorcontrib><creatorcontrib>Lee, Brian Y</creatorcontrib><creatorcontrib>McGorty, Ryan J</creatorcontrib><creatorcontrib>Robertson-Anderson, Rae M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheung, Janet Y</au><au>Garamella, Jonathan</au><au>Kahl, Stella K</au><au>Lee, Brian Y</au><au>McGorty, Ryan J</au><au>Robertson-Anderson, Rae M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Motor-driven advection competes with crowding to drive spatiotemporally heterogeneous transport in cytoskeleton composites</atitle><jtitle>arXiv.org</jtitle><date>2022-05-09</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The cytoskeleton -- a composite network of biopolymers, molecular motors, and associated binding proteins -- is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties -- ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems -- remains challenging. Here, we combine light sheet microscopy with differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly, while higher actomyosin content enhances superdiffusivity, it also markedly increases the degree of subdiffusion at short timescales and generally slows transport. Corresponding displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero modes, indicative of directed advection coupled with caged diffusion and hopping. At larger spatiotemporal scales, particles undergo superdiffusion which generally increases with actomyosin content, in contrast to normal, yet faster, diffusion without actomyosin. Our specific results shed important new light on the interplay between non-equilibrium processes, crowding and heterogeneity in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter systems to elucidate transport and dynamics across scales.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2662171864
source Freely Accessible Journals
subjects Actomyosin
Advection
Biopolymers
Crowding
Cytoskeleton
Diffusion rate
Heterogeneity
Light sheets
Microscopy
Molecular motors
Particle tracking
Particulate composites
title Motor-driven advection competes with crowding to drive spatiotemporally heterogeneous transport in cytoskeleton composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T14%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Motor-driven%20advection%20competes%20with%20crowding%20to%20drive%20spatiotemporally%20heterogeneous%20transport%20in%20cytoskeleton%20composites&rft.jtitle=arXiv.org&rft.au=Sheung,%20Janet%20Y&rft.date=2022-05-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2662171864%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662171864&rft_id=info:pmid/&rfr_iscdi=true