A 3.1-5.2GHz, Energy-Efficient Single Antenna, Cancellation-Free, Bitwise Time-Division Duplex Transceiver for High Channel Count Optogenetic Neural Interface

We report an energy-efficient, cancellation-free, bit-wise time-division duplex (B-TDD) transceiver (TRX) for real-time closed-loop control of high channel count neural interfaces. The proposed B-TDD architecture consists of a duty-cycled ultra-wide band (UWB) transmitter (3.1−5 GHz) and a switching...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical circuits and systems 2022-02, Vol.16 (1), p.52-63
Hauptverfasser: Lin, Yu-Ju, Song, Hyunsoo, Oh, Sungjin, Voroslakos, Mihaly, Kim, Kanghwan, Chen, Xing, Wentzloff, David D., Buzsaki, Gyorgy, Park, Sung-Yun, Yoon, Euisik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 1
container_start_page 52
container_title IEEE transactions on biomedical circuits and systems
container_volume 16
creator Lin, Yu-Ju
Song, Hyunsoo
Oh, Sungjin
Voroslakos, Mihaly
Kim, Kanghwan
Chen, Xing
Wentzloff, David D.
Buzsaki, Gyorgy
Park, Sung-Yun
Yoon, Euisik
description We report an energy-efficient, cancellation-free, bit-wise time-division duplex (B-TDD) transceiver (TRX) for real-time closed-loop control of high channel count neural interfaces. The proposed B-TDD architecture consists of a duty-cycled ultra-wide band (UWB) transmitter (3.1−5 GHz) and a switching U-NII band (5.2 GHz) receiver. An energy-efficient duplex is realized in a single antenna without power-hungry self-interference cancellation circuits which are prevalently used in the conventional full-duplex, single antenna transceivers. To suppress the interference between up- and down-links and enhance the isolation between the two, we devised a fast-switching scheme in a low noise amplifier and used 5× oversampling with a built-in winner-take-all voting in the receiver. The B-TDD transceiver was fabricated in 65 nm CMOS RF process, achieving low energy consumption of 0.32 nJ/b at 10 Mbps in the receiver and 9.7 pJ/b at 200 Mbps in the transmitter, respectively. For validation, the B-TDD TRX has been integrated with a μLED optoelectrode and a custom analog frontend integrated circuit in a prototype wireless bidirectional neural interface system. Successful in-vivo operation for simultaneously recording broadband neural signals and optical stimulation was demonstrated in a transgenic rodent.
doi_str_mv 10.1109/TBCAS.2021.3139891
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2662097323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9669073</ieee_id><sourcerecordid>2616956170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-5619a664c4ef9a5a2db2f69cd67bf76c1917c093ec8780f4af852cea6ac3f0673</originalsourceid><addsrcrecordid>eNpdkctu2zAQRYWiRfNof6AFCgLZZGGqfEiUZukoThwgaBZx1wJNDx0GMuWSUtr0Y_qtpWM3i65I4J6ZS-Jk2SfOcs4ZfF1cNNP7XDDBc8kl1MDfZMccCkYBgL3d3aWgRVmUR9lJjI-MlUqAeJ8dyQJqoYAdZ3-mROaclrm4nv-ekJnHsH6mM2udcegHcu_8ukMy9QN6ryek0d5g1-nB9Z5eBcQJuXDDTxeRLNwG6aV7cjFl5HLcdviLLIL20aB7wkBsH8jcrR9I86C9x440_Zgq7rZDv0aPgzPkG45Bd-Qm1QWrDX7I3lndRfx4OE-z71ezRTOnt3fXN830lhoJ5UBLxUErVZgCLehSi9VSWAVmpaqlrZThwCvDQKKpq5rZQtu6FAa10kZapip5mp3v925D_2PEOLQbF18-6rEfYysUV5BaKpbQs__Qx34MPr0uUUowqKSQiRJ7yoQ-xoC23Qa30eG55azd2Wtf7LU7e-3BXhr6clg9Lje4eh35pysBn_eAQ8TXGFTKKin_Ak6knfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662097323</pqid></control><display><type>article</type><title>A 3.1-5.2GHz, Energy-Efficient Single Antenna, Cancellation-Free, Bitwise Time-Division Duplex Transceiver for High Channel Count Optogenetic Neural Interface</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Yu-Ju ; Song, Hyunsoo ; Oh, Sungjin ; Voroslakos, Mihaly ; Kim, Kanghwan ; Chen, Xing ; Wentzloff, David D. ; Buzsaki, Gyorgy ; Park, Sung-Yun ; Yoon, Euisik</creator><creatorcontrib>Lin, Yu-Ju ; Song, Hyunsoo ; Oh, Sungjin ; Voroslakos, Mihaly ; Kim, Kanghwan ; Chen, Xing ; Wentzloff, David D. ; Buzsaki, Gyorgy ; Park, Sung-Yun ; Yoon, Euisik</creatorcontrib><description>We report an energy-efficient, cancellation-free, bit-wise time-division duplex (B-TDD) transceiver (TRX) for real-time closed-loop control of high channel count neural interfaces. The proposed B-TDD architecture consists of a duty-cycled ultra-wide band (UWB) transmitter (3.1−5 GHz) and a switching U-NII band (5.2 GHz) receiver. An energy-efficient duplex is realized in a single antenna without power-hungry self-interference cancellation circuits which are prevalently used in the conventional full-duplex, single antenna transceivers. To suppress the interference between up- and down-links and enhance the isolation between the two, we devised a fast-switching scheme in a low noise amplifier and used 5× oversampling with a built-in winner-take-all voting in the receiver. The B-TDD transceiver was fabricated in 65 nm CMOS RF process, achieving low energy consumption of 0.32 nJ/b at 10 Mbps in the receiver and 9.7 pJ/b at 200 Mbps in the transmitter, respectively. For validation, the B-TDD TRX has been integrated with a μLED optoelectrode and a custom analog frontend integrated circuit in a prototype wireless bidirectional neural interface system. Successful in-vivo operation for simultaneously recording broadband neural signals and optical stimulation was demonstrated in a transgenic rodent.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2021.3139891</identifier><identifier>PMID: 34982690</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Amplifiers, Electronic ; Analog circuits ; Antennas ; Bit-wise time-division duplex (B-TDD) ; Broadband ; Cancellation ; Cancellation circuits ; closed-loop control ; Computer applications ; Control systems ; Energy consumption ; Energy efficiency ; Equipment Design ; Feedback control ; Implants ; Integrated circuits ; Interfaces ; Interference ; Low noise ; Optical communication ; Optogenetics ; Oversampling ; Phase locked loops ; Receivers &amp; amplifiers ; Switching ; Take-all disease ; transceiver (TRX) ; Transceivers ; ultra-wide band (UWB) ; unlicensed national information infrastructure (U-NII) band ; Wireless communication ; wireless neural interface ; Wireless Technology</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2022-02, Vol.16 (1), p.52-63</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-5619a664c4ef9a5a2db2f69cd67bf76c1917c093ec8780f4af852cea6ac3f0673</citedby><cites>FETCH-LOGICAL-c395t-5619a664c4ef9a5a2db2f69cd67bf76c1917c093ec8780f4af852cea6ac3f0673</cites><orcidid>0000-0002-1022-1355 ; 0000-0001-9469-7184 ; 0000-0003-3511-1555 ; 0000-0001-5557-9978 ; 0000-0003-1144-956X ; 0000-0002-2127-1200 ; 0000-0002-4623-5417 ; 0000-0002-3100-4800 ; 0000-0003-4506-4377 ; 0000-0002-9308-8392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9669073$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9669073$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34982690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Yu-Ju</creatorcontrib><creatorcontrib>Song, Hyunsoo</creatorcontrib><creatorcontrib>Oh, Sungjin</creatorcontrib><creatorcontrib>Voroslakos, Mihaly</creatorcontrib><creatorcontrib>Kim, Kanghwan</creatorcontrib><creatorcontrib>Chen, Xing</creatorcontrib><creatorcontrib>Wentzloff, David D.</creatorcontrib><creatorcontrib>Buzsaki, Gyorgy</creatorcontrib><creatorcontrib>Park, Sung-Yun</creatorcontrib><creatorcontrib>Yoon, Euisik</creatorcontrib><title>A 3.1-5.2GHz, Energy-Efficient Single Antenna, Cancellation-Free, Bitwise Time-Division Duplex Transceiver for High Channel Count Optogenetic Neural Interface</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>We report an energy-efficient, cancellation-free, bit-wise time-division duplex (B-TDD) transceiver (TRX) for real-time closed-loop control of high channel count neural interfaces. The proposed B-TDD architecture consists of a duty-cycled ultra-wide band (UWB) transmitter (3.1−5 GHz) and a switching U-NII band (5.2 GHz) receiver. An energy-efficient duplex is realized in a single antenna without power-hungry self-interference cancellation circuits which are prevalently used in the conventional full-duplex, single antenna transceivers. To suppress the interference between up- and down-links and enhance the isolation between the two, we devised a fast-switching scheme in a low noise amplifier and used 5× oversampling with a built-in winner-take-all voting in the receiver. The B-TDD transceiver was fabricated in 65 nm CMOS RF process, achieving low energy consumption of 0.32 nJ/b at 10 Mbps in the receiver and 9.7 pJ/b at 200 Mbps in the transmitter, respectively. For validation, the B-TDD TRX has been integrated with a μLED optoelectrode and a custom analog frontend integrated circuit in a prototype wireless bidirectional neural interface system. Successful in-vivo operation for simultaneously recording broadband neural signals and optical stimulation was demonstrated in a transgenic rodent.</description><subject>Amplifiers, Electronic</subject><subject>Analog circuits</subject><subject>Antennas</subject><subject>Bit-wise time-division duplex (B-TDD)</subject><subject>Broadband</subject><subject>Cancellation</subject><subject>Cancellation circuits</subject><subject>closed-loop control</subject><subject>Computer applications</subject><subject>Control systems</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Equipment Design</subject><subject>Feedback control</subject><subject>Implants</subject><subject>Integrated circuits</subject><subject>Interfaces</subject><subject>Interference</subject><subject>Low noise</subject><subject>Optical communication</subject><subject>Optogenetics</subject><subject>Oversampling</subject><subject>Phase locked loops</subject><subject>Receivers &amp; amplifiers</subject><subject>Switching</subject><subject>Take-all disease</subject><subject>transceiver (TRX)</subject><subject>Transceivers</subject><subject>ultra-wide band (UWB)</subject><subject>unlicensed national information infrastructure (U-NII) band</subject><subject>Wireless communication</subject><subject>wireless neural interface</subject><subject>Wireless Technology</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkctu2zAQRYWiRfNof6AFCgLZZGGqfEiUZukoThwgaBZx1wJNDx0GMuWSUtr0Y_qtpWM3i65I4J6ZS-Jk2SfOcs4ZfF1cNNP7XDDBc8kl1MDfZMccCkYBgL3d3aWgRVmUR9lJjI-MlUqAeJ8dyQJqoYAdZ3-mROaclrm4nv-ekJnHsH6mM2udcegHcu_8ukMy9QN6ryek0d5g1-nB9Z5eBcQJuXDDTxeRLNwG6aV7cjFl5HLcdviLLIL20aB7wkBsH8jcrR9I86C9x440_Zgq7rZDv0aPgzPkG45Bd-Qm1QWrDX7I3lndRfx4OE-z71ezRTOnt3fXN830lhoJ5UBLxUErVZgCLehSi9VSWAVmpaqlrZThwCvDQKKpq5rZQtu6FAa10kZapip5mp3v925D_2PEOLQbF18-6rEfYysUV5BaKpbQs__Qx34MPr0uUUowqKSQiRJ7yoQ-xoC23Qa30eG55azd2Wtf7LU7e-3BXhr6clg9Lje4eh35pysBn_eAQ8TXGFTKKin_Ak6knfU</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Lin, Yu-Ju</creator><creator>Song, Hyunsoo</creator><creator>Oh, Sungjin</creator><creator>Voroslakos, Mihaly</creator><creator>Kim, Kanghwan</creator><creator>Chen, Xing</creator><creator>Wentzloff, David D.</creator><creator>Buzsaki, Gyorgy</creator><creator>Park, Sung-Yun</creator><creator>Yoon, Euisik</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1022-1355</orcidid><orcidid>https://orcid.org/0000-0001-9469-7184</orcidid><orcidid>https://orcid.org/0000-0003-3511-1555</orcidid><orcidid>https://orcid.org/0000-0001-5557-9978</orcidid><orcidid>https://orcid.org/0000-0003-1144-956X</orcidid><orcidid>https://orcid.org/0000-0002-2127-1200</orcidid><orcidid>https://orcid.org/0000-0002-4623-5417</orcidid><orcidid>https://orcid.org/0000-0002-3100-4800</orcidid><orcidid>https://orcid.org/0000-0003-4506-4377</orcidid><orcidid>https://orcid.org/0000-0002-9308-8392</orcidid></search><sort><creationdate>20220201</creationdate><title>A 3.1-5.2GHz, Energy-Efficient Single Antenna, Cancellation-Free, Bitwise Time-Division Duplex Transceiver for High Channel Count Optogenetic Neural Interface</title><author>Lin, Yu-Ju ; Song, Hyunsoo ; Oh, Sungjin ; Voroslakos, Mihaly ; Kim, Kanghwan ; Chen, Xing ; Wentzloff, David D. ; Buzsaki, Gyorgy ; Park, Sung-Yun ; Yoon, Euisik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-5619a664c4ef9a5a2db2f69cd67bf76c1917c093ec8780f4af852cea6ac3f0673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplifiers, Electronic</topic><topic>Analog circuits</topic><topic>Antennas</topic><topic>Bit-wise time-division duplex (B-TDD)</topic><topic>Broadband</topic><topic>Cancellation</topic><topic>Cancellation circuits</topic><topic>closed-loop control</topic><topic>Computer applications</topic><topic>Control systems</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Equipment Design</topic><topic>Feedback control</topic><topic>Implants</topic><topic>Integrated circuits</topic><topic>Interfaces</topic><topic>Interference</topic><topic>Low noise</topic><topic>Optical communication</topic><topic>Optogenetics</topic><topic>Oversampling</topic><topic>Phase locked loops</topic><topic>Receivers &amp; amplifiers</topic><topic>Switching</topic><topic>Take-all disease</topic><topic>transceiver (TRX)</topic><topic>Transceivers</topic><topic>ultra-wide band (UWB)</topic><topic>unlicensed national information infrastructure (U-NII) band</topic><topic>Wireless communication</topic><topic>wireless neural interface</topic><topic>Wireless Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yu-Ju</creatorcontrib><creatorcontrib>Song, Hyunsoo</creatorcontrib><creatorcontrib>Oh, Sungjin</creatorcontrib><creatorcontrib>Voroslakos, Mihaly</creatorcontrib><creatorcontrib>Kim, Kanghwan</creatorcontrib><creatorcontrib>Chen, Xing</creatorcontrib><creatorcontrib>Wentzloff, David D.</creatorcontrib><creatorcontrib>Buzsaki, Gyorgy</creatorcontrib><creatorcontrib>Park, Sung-Yun</creatorcontrib><creatorcontrib>Yoon, Euisik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Yu-Ju</au><au>Song, Hyunsoo</au><au>Oh, Sungjin</au><au>Voroslakos, Mihaly</au><au>Kim, Kanghwan</au><au>Chen, Xing</au><au>Wentzloff, David D.</au><au>Buzsaki, Gyorgy</au><au>Park, Sung-Yun</au><au>Yoon, Euisik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3.1-5.2GHz, Energy-Efficient Single Antenna, Cancellation-Free, Bitwise Time-Division Duplex Transceiver for High Channel Count Optogenetic Neural Interface</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>16</volume><issue>1</issue><spage>52</spage><epage>63</epage><pages>52-63</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>We report an energy-efficient, cancellation-free, bit-wise time-division duplex (B-TDD) transceiver (TRX) for real-time closed-loop control of high channel count neural interfaces. The proposed B-TDD architecture consists of a duty-cycled ultra-wide band (UWB) transmitter (3.1−5 GHz) and a switching U-NII band (5.2 GHz) receiver. An energy-efficient duplex is realized in a single antenna without power-hungry self-interference cancellation circuits which are prevalently used in the conventional full-duplex, single antenna transceivers. To suppress the interference between up- and down-links and enhance the isolation between the two, we devised a fast-switching scheme in a low noise amplifier and used 5× oversampling with a built-in winner-take-all voting in the receiver. The B-TDD transceiver was fabricated in 65 nm CMOS RF process, achieving low energy consumption of 0.32 nJ/b at 10 Mbps in the receiver and 9.7 pJ/b at 200 Mbps in the transmitter, respectively. For validation, the B-TDD TRX has been integrated with a μLED optoelectrode and a custom analog frontend integrated circuit in a prototype wireless bidirectional neural interface system. Successful in-vivo operation for simultaneously recording broadband neural signals and optical stimulation was demonstrated in a transgenic rodent.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34982690</pmid><doi>10.1109/TBCAS.2021.3139891</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1022-1355</orcidid><orcidid>https://orcid.org/0000-0001-9469-7184</orcidid><orcidid>https://orcid.org/0000-0003-3511-1555</orcidid><orcidid>https://orcid.org/0000-0001-5557-9978</orcidid><orcidid>https://orcid.org/0000-0003-1144-956X</orcidid><orcidid>https://orcid.org/0000-0002-2127-1200</orcidid><orcidid>https://orcid.org/0000-0002-4623-5417</orcidid><orcidid>https://orcid.org/0000-0002-3100-4800</orcidid><orcidid>https://orcid.org/0000-0003-4506-4377</orcidid><orcidid>https://orcid.org/0000-0002-9308-8392</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2022-02, Vol.16 (1), p.52-63
issn 1932-4545
1940-9990
language eng
recordid cdi_proquest_journals_2662097323
source IEEE Electronic Library (IEL)
subjects Amplifiers, Electronic
Analog circuits
Antennas
Bit-wise time-division duplex (B-TDD)
Broadband
Cancellation
Cancellation circuits
closed-loop control
Computer applications
Control systems
Energy consumption
Energy efficiency
Equipment Design
Feedback control
Implants
Integrated circuits
Interfaces
Interference
Low noise
Optical communication
Optogenetics
Oversampling
Phase locked loops
Receivers & amplifiers
Switching
Take-all disease
transceiver (TRX)
Transceivers
ultra-wide band (UWB)
unlicensed national information infrastructure (U-NII) band
Wireless communication
wireless neural interface
Wireless Technology
title A 3.1-5.2GHz, Energy-Efficient Single Antenna, Cancellation-Free, Bitwise Time-Division Duplex Transceiver for High Channel Count Optogenetic Neural Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203.1-5.2GHz,%20Energy-Efficient%20Single%20Antenna,%20Cancellation-Free,%20Bitwise%20Time-Division%20Duplex%20Transceiver%20for%20High%20Channel%20Count%20Optogenetic%20Neural%20Interface&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Lin,%20Yu-Ju&rft.date=2022-02-01&rft.volume=16&rft.issue=1&rft.spage=52&rft.epage=63&rft.pages=52-63&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2021.3139891&rft_dat=%3Cproquest_RIE%3E2616956170%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662097323&rft_id=info:pmid/34982690&rft_ieee_id=9669073&rfr_iscdi=true