Enhancement of light field disparity maps by reducing the silhouette effect and plane noise

During the last decade, there has been an increasing number of applications dealing with multidimensional visual information, either for 3D object representation or feature extraction purposes. In this context, recent advances in light field technology, have been driving research efforts in disparit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multidimensional systems and signal processing 2022-01, Vol.33 (2), p.1-33
Hauptverfasser: Lourenco, Rui M., Tavora, Luis M. N., Assuncao, Pedro A. A., Thomaz, Lucas A., Fonseca-Pinto, Rui, Faria, Sergio M. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 2
container_start_page 1
container_title Multidimensional systems and signal processing
container_volume 33
creator Lourenco, Rui M.
Tavora, Luis M. N.
Assuncao, Pedro A. A.
Thomaz, Lucas A.
Fonseca-Pinto, Rui
Faria, Sergio M. M.
description During the last decade, there has been an increasing number of applications dealing with multidimensional visual information, either for 3D object representation or feature extraction purposes. In this context, recent advances in light field technology, have been driving research efforts in disparity estimation methods. Among the existing ones, those based on the structure tensor have emerged as very promising to estimate disparity maps from Epipolar Plane Images. However, this approach is known to have two intrinsic limitations: (i) silhouette enlargement and (ii) irregularity of surface normal maps as computed from the estimated disparity. To address these problems, this work proposes a new method for improving disparity maps obtained from the structure-tensor approach by enhancing the silhouette and reducing the noise of planar surfaces in light fields. An edge-based approach is initially used for silhouette improvement through refinement of the estimated disparity values around object edges. Then, a plane detection algorithm, based on a seed growth strategy, is used to estimate planar regions, which in turn are used to guide correction of erroneous disparity values detected in object boundaries. The proposed algorithm shows an average improvement of 98.3% in terms of median angle error for plane surfaces, when compared to regular structure-tensor-based methods, outperforming state-of-the-art methods. The proposed framework also presents very competitive results, in terms of mean square error between disparity maps and their ground truth, when compared with their counterparts.
doi_str_mv 10.1007/s11045-021-00807-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661999368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661999368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-37675c03dba29618ea324418cfd3c87c5ef6ff829f5a2491375cc02d8150f18a3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AU8Bz9F8tGl6lGX9AMGLnjyEbDrZZummNUkP---NruDN0zDw3gw8hK4ZvWWUNneJMVrVhHJGKFW0Ic0JWrC6EYQqXp2iBW25ILIs5-gipR2lRWNygT7WoTfBwh5CxqPDg9_2GTsPQ4c7nyYTfT7gvZkS3hxwhG62Pmxx7gEnP_TjDDkDBufAZmxCh6fBBMBh9Aku0ZkzQ4Kr37lE7w_rt9UTeXl9fF7dvxArWJWJaGRTWyq6jeGtZAqM4FXFlHWdsKqxNTjpnOKtqw2vWiYKbSnvFKupY8qIJbo53p3i-DlDyno3zjGUl5pLydq2FVIVih8pG8eUIjg9Rb838aAZ1d8R9TGiLhH1T0TdFEkcpVTgsIX4d_of6wuOpnSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661999368</pqid></control><display><type>article</type><title>Enhancement of light field disparity maps by reducing the silhouette effect and plane noise</title><source>SpringerNature Journals</source><creator>Lourenco, Rui M. ; Tavora, Luis M. N. ; Assuncao, Pedro A. A. ; Thomaz, Lucas A. ; Fonseca-Pinto, Rui ; Faria, Sergio M. M.</creator><creatorcontrib>Lourenco, Rui M. ; Tavora, Luis M. N. ; Assuncao, Pedro A. A. ; Thomaz, Lucas A. ; Fonseca-Pinto, Rui ; Faria, Sergio M. M.</creatorcontrib><description>During the last decade, there has been an increasing number of applications dealing with multidimensional visual information, either for 3D object representation or feature extraction purposes. In this context, recent advances in light field technology, have been driving research efforts in disparity estimation methods. Among the existing ones, those based on the structure tensor have emerged as very promising to estimate disparity maps from Epipolar Plane Images. However, this approach is known to have two intrinsic limitations: (i) silhouette enlargement and (ii) irregularity of surface normal maps as computed from the estimated disparity. To address these problems, this work proposes a new method for improving disparity maps obtained from the structure-tensor approach by enhancing the silhouette and reducing the noise of planar surfaces in light fields. An edge-based approach is initially used for silhouette improvement through refinement of the estimated disparity values around object edges. Then, a plane detection algorithm, based on a seed growth strategy, is used to estimate planar regions, which in turn are used to guide correction of erroneous disparity values detected in object boundaries. The proposed algorithm shows an average improvement of 98.3% in terms of median angle error for plane surfaces, when compared to regular structure-tensor-based methods, outperforming state-of-the-art methods. The proposed framework also presents very competitive results, in terms of mean square error between disparity maps and their ground truth, when compared with their counterparts.</description><identifier>ISSN: 0923-6082</identifier><identifier>EISSN: 1573-0824</identifier><identifier>DOI: 10.1007/s11045-021-00807-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Circuits and Systems ; Electrical Engineering ; Engineering ; Feature extraction ; Mathematical analysis ; Signal,Image and Speech Processing ; Tensors</subject><ispartof>Multidimensional systems and signal processing, 2022-01, Vol.33 (2), p.1-33</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-37675c03dba29618ea324418cfd3c87c5ef6ff829f5a2491375cc02d8150f18a3</cites><orcidid>0000-0001-9539-8311 ; 0000-0002-4439-8167 ; 0000-0001-6774-5363 ; 0000-0002-8580-1979 ; 0000-0002-0993-9124 ; 0000-0002-1004-7772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11045-021-00807-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11045-021-00807-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lourenco, Rui M.</creatorcontrib><creatorcontrib>Tavora, Luis M. N.</creatorcontrib><creatorcontrib>Assuncao, Pedro A. A.</creatorcontrib><creatorcontrib>Thomaz, Lucas A.</creatorcontrib><creatorcontrib>Fonseca-Pinto, Rui</creatorcontrib><creatorcontrib>Faria, Sergio M. M.</creatorcontrib><title>Enhancement of light field disparity maps by reducing the silhouette effect and plane noise</title><title>Multidimensional systems and signal processing</title><addtitle>Multidim Syst Sign Process</addtitle><description>During the last decade, there has been an increasing number of applications dealing with multidimensional visual information, either for 3D object representation or feature extraction purposes. In this context, recent advances in light field technology, have been driving research efforts in disparity estimation methods. Among the existing ones, those based on the structure tensor have emerged as very promising to estimate disparity maps from Epipolar Plane Images. However, this approach is known to have two intrinsic limitations: (i) silhouette enlargement and (ii) irregularity of surface normal maps as computed from the estimated disparity. To address these problems, this work proposes a new method for improving disparity maps obtained from the structure-tensor approach by enhancing the silhouette and reducing the noise of planar surfaces in light fields. An edge-based approach is initially used for silhouette improvement through refinement of the estimated disparity values around object edges. Then, a plane detection algorithm, based on a seed growth strategy, is used to estimate planar regions, which in turn are used to guide correction of erroneous disparity values detected in object boundaries. The proposed algorithm shows an average improvement of 98.3% in terms of median angle error for plane surfaces, when compared to regular structure-tensor-based methods, outperforming state-of-the-art methods. The proposed framework also presents very competitive results, in terms of mean square error between disparity maps and their ground truth, when compared with their counterparts.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Circuits and Systems</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Mathematical analysis</subject><subject>Signal,Image and Speech Processing</subject><subject>Tensors</subject><issn>0923-6082</issn><issn>1573-0824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LxDAQQIMouK7-AU8Bz9F8tGl6lGX9AMGLnjyEbDrZZummNUkP---NruDN0zDw3gw8hK4ZvWWUNneJMVrVhHJGKFW0Ic0JWrC6EYQqXp2iBW25ILIs5-gipR2lRWNygT7WoTfBwh5CxqPDg9_2GTsPQ4c7nyYTfT7gvZkS3hxwhG62Pmxx7gEnP_TjDDkDBufAZmxCh6fBBMBh9Aku0ZkzQ4Kr37lE7w_rt9UTeXl9fF7dvxArWJWJaGRTWyq6jeGtZAqM4FXFlHWdsKqxNTjpnOKtqw2vWiYKbSnvFKupY8qIJbo53p3i-DlDyno3zjGUl5pLydq2FVIVih8pG8eUIjg9Rb838aAZ1d8R9TGiLhH1T0TdFEkcpVTgsIX4d_of6wuOpnSI</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Lourenco, Rui M.</creator><creator>Tavora, Luis M. N.</creator><creator>Assuncao, Pedro A. A.</creator><creator>Thomaz, Lucas A.</creator><creator>Fonseca-Pinto, Rui</creator><creator>Faria, Sergio M. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9539-8311</orcidid><orcidid>https://orcid.org/0000-0002-4439-8167</orcidid><orcidid>https://orcid.org/0000-0001-6774-5363</orcidid><orcidid>https://orcid.org/0000-0002-8580-1979</orcidid><orcidid>https://orcid.org/0000-0002-0993-9124</orcidid><orcidid>https://orcid.org/0000-0002-1004-7772</orcidid></search><sort><creationdate>20220101</creationdate><title>Enhancement of light field disparity maps by reducing the silhouette effect and plane noise</title><author>Lourenco, Rui M. ; Tavora, Luis M. N. ; Assuncao, Pedro A. A. ; Thomaz, Lucas A. ; Fonseca-Pinto, Rui ; Faria, Sergio M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-37675c03dba29618ea324418cfd3c87c5ef6ff829f5a2491375cc02d8150f18a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Circuits and Systems</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Mathematical analysis</topic><topic>Signal,Image and Speech Processing</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lourenco, Rui M.</creatorcontrib><creatorcontrib>Tavora, Luis M. N.</creatorcontrib><creatorcontrib>Assuncao, Pedro A. A.</creatorcontrib><creatorcontrib>Thomaz, Lucas A.</creatorcontrib><creatorcontrib>Fonseca-Pinto, Rui</creatorcontrib><creatorcontrib>Faria, Sergio M. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Multidimensional systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lourenco, Rui M.</au><au>Tavora, Luis M. N.</au><au>Assuncao, Pedro A. A.</au><au>Thomaz, Lucas A.</au><au>Fonseca-Pinto, Rui</au><au>Faria, Sergio M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of light field disparity maps by reducing the silhouette effect and plane noise</atitle><jtitle>Multidimensional systems and signal processing</jtitle><stitle>Multidim Syst Sign Process</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>33</volume><issue>2</issue><spage>1</spage><epage>33</epage><pages>1-33</pages><issn>0923-6082</issn><eissn>1573-0824</eissn><abstract>During the last decade, there has been an increasing number of applications dealing with multidimensional visual information, either for 3D object representation or feature extraction purposes. In this context, recent advances in light field technology, have been driving research efforts in disparity estimation methods. Among the existing ones, those based on the structure tensor have emerged as very promising to estimate disparity maps from Epipolar Plane Images. However, this approach is known to have two intrinsic limitations: (i) silhouette enlargement and (ii) irregularity of surface normal maps as computed from the estimated disparity. To address these problems, this work proposes a new method for improving disparity maps obtained from the structure-tensor approach by enhancing the silhouette and reducing the noise of planar surfaces in light fields. An edge-based approach is initially used for silhouette improvement through refinement of the estimated disparity values around object edges. Then, a plane detection algorithm, based on a seed growth strategy, is used to estimate planar regions, which in turn are used to guide correction of erroneous disparity values detected in object boundaries. The proposed algorithm shows an average improvement of 98.3% in terms of median angle error for plane surfaces, when compared to regular structure-tensor-based methods, outperforming state-of-the-art methods. The proposed framework also presents very competitive results, in terms of mean square error between disparity maps and their ground truth, when compared with their counterparts.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11045-021-00807-7</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-9539-8311</orcidid><orcidid>https://orcid.org/0000-0002-4439-8167</orcidid><orcidid>https://orcid.org/0000-0001-6774-5363</orcidid><orcidid>https://orcid.org/0000-0002-8580-1979</orcidid><orcidid>https://orcid.org/0000-0002-0993-9124</orcidid><orcidid>https://orcid.org/0000-0002-1004-7772</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0923-6082
ispartof Multidimensional systems and signal processing, 2022-01, Vol.33 (2), p.1-33
issn 0923-6082
1573-0824
language eng
recordid cdi_proquest_journals_2661999368
source SpringerNature Journals
subjects Algorithms
Artificial Intelligence
Circuits and Systems
Electrical Engineering
Engineering
Feature extraction
Mathematical analysis
Signal,Image and Speech Processing
Tensors
title Enhancement of light field disparity maps by reducing the silhouette effect and plane noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20light%20field%20disparity%20maps%20by%20reducing%20the%20silhouette%20effect%20and%20plane%20noise&rft.jtitle=Multidimensional%20systems%20and%20signal%20processing&rft.au=Lourenco,%20Rui%20M.&rft.date=2022-01-01&rft.volume=33&rft.issue=2&rft.spage=1&rft.epage=33&rft.pages=1-33&rft.issn=0923-6082&rft.eissn=1573-0824&rft_id=info:doi/10.1007/s11045-021-00807-7&rft_dat=%3Cproquest_cross%3E2661999368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661999368&rft_id=info:pmid/&rfr_iscdi=true