Ultra-high permeable phenine nanotube membranes for water desalination

Nanopore desalination technology hinges on high water-permeable membranes which, at the same time, block ions efficiently. In this study, we consider a recently synthesized [ Science 363 , 151-155 (2019)] phenine nanotube (PNT) for water desalination applications. Using both equilibrium and non-equi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-05, Vol.24 (18), p.11196-1125
Hauptverfasser: Naskar, Supriyo, Sahoo, Anil Kumar, Moid, Mohd, Maiti, Prabal K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1125
container_issue 18
container_start_page 11196
container_title Physical chemistry chemical physics : PCCP
container_volume 24
creator Naskar, Supriyo
Sahoo, Anil Kumar
Moid, Mohd
Maiti, Prabal K
description Nanopore desalination technology hinges on high water-permeable membranes which, at the same time, block ions efficiently. In this study, we consider a recently synthesized [ Science 363 , 151-155 (2019)] phenine nanotube (PNT) for water desalination applications. Using both equilibrium and non-equilibrium molecular dynamics simulations, we show that the PNT membrane completely rejects salts, but permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration. We provide the microscopic mechanisms of salt rejection and fast water-transport by calculating the free-energy landscapes and electrostatic potential profiles. A collective diffusion model accurately predicts the water permeability obtained from the simulations over a wide range of pressure gradients. We propose a method to calculate the osmotic water permeability from the equilibrium simulation data and find that it is very high for the PNT membrane. These remarkable properties of PNT can be applied in various nanofluidic applications, such as ion-selective channels, ionic transistors, sensing, molecular sieving, and blue energy harvesting. Phenine nanotube membranes completely rejects salts and permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration.
doi_str_mv 10.1039/d1cp04557a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661977844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661977844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-167ddc8a3fd12671124b5903e5c6099bee447c4f666750abfe158810505ca493</originalsourceid><addsrcrecordid>eNpd0U1Lw0AQBuBFFFs_Lt6VgBcRojvdr-RYqlWhoId6DpvNxKYkm7ibIP57V1sreJqFeXYY3iHkDOgNUJbeFmA6yoVQeo-MgUsWpzTh-7u3kiNy5P2aUgoC2CEZMcET4GoyJvPXunc6XlVvq6hD16DOa4y6FdrKYmS1bfshx6jBJnfaoo_K1kUfukcXFeh1XVndV609IQelrj2ebusxWc7vl7PHePH88DSbLmLDmOpjkKooTKJZWcBEKoAJz0VKGQojaZrmiJwrw0sppRJU5yWCSBKgggqjecqOydVmbOfa9wF9nzWVN1jXYbV28NlEivBRAmeBXv6j63ZwNiwXlIRUqYTzoK43yrjWe4dl1rmq0e4zA5p9h5vdwezlJ9xpwBfbkUPeYLGjv2kGcL4Bzptd9-867AssDHzh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661977844</pqid></control><display><type>article</type><title>Ultra-high permeable phenine nanotube membranes for water desalination</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Naskar, Supriyo ; Sahoo, Anil Kumar ; Moid, Mohd ; Maiti, Prabal K</creator><creatorcontrib>Naskar, Supriyo ; Sahoo, Anil Kumar ; Moid, Mohd ; Maiti, Prabal K</creatorcontrib><description>Nanopore desalination technology hinges on high water-permeable membranes which, at the same time, block ions efficiently. In this study, we consider a recently synthesized [ Science 363 , 151-155 (2019)] phenine nanotube (PNT) for water desalination applications. Using both equilibrium and non-equilibrium molecular dynamics simulations, we show that the PNT membrane completely rejects salts, but permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration. We provide the microscopic mechanisms of salt rejection and fast water-transport by calculating the free-energy landscapes and electrostatic potential profiles. A collective diffusion model accurately predicts the water permeability obtained from the simulations over a wide range of pressure gradients. We propose a method to calculate the osmotic water permeability from the equilibrium simulation data and find that it is very high for the PNT membrane. These remarkable properties of PNT can be applied in various nanofluidic applications, such as ion-selective channels, ionic transistors, sensing, molecular sieving, and blue energy harvesting. Phenine nanotube membranes completely rejects salts and permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp04557a</identifier><identifier>PMID: 35481472</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Desalination ; Energy harvesting ; Equilibrium ; Fluidics ; Free energy ; Membranes ; Molecular dynamics ; Nanofluids ; Nanotubes ; Osmosis ; Permeability ; Pressure gradients ; Simulation ; Transistors ; Water purification</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-05, Vol.24 (18), p.11196-1125</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-167ddc8a3fd12671124b5903e5c6099bee447c4f666750abfe158810505ca493</citedby><cites>FETCH-LOGICAL-c337t-167ddc8a3fd12671124b5903e5c6099bee447c4f666750abfe158810505ca493</cites><orcidid>0000-0002-3690-6483 ; 0000-0001-7769-4774 ; 0000-0002-4563-6833 ; 0000-0002-9956-1136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35481472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naskar, Supriyo</creatorcontrib><creatorcontrib>Sahoo, Anil Kumar</creatorcontrib><creatorcontrib>Moid, Mohd</creatorcontrib><creatorcontrib>Maiti, Prabal K</creatorcontrib><title>Ultra-high permeable phenine nanotube membranes for water desalination</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Nanopore desalination technology hinges on high water-permeable membranes which, at the same time, block ions efficiently. In this study, we consider a recently synthesized [ Science 363 , 151-155 (2019)] phenine nanotube (PNT) for water desalination applications. Using both equilibrium and non-equilibrium molecular dynamics simulations, we show that the PNT membrane completely rejects salts, but permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration. We provide the microscopic mechanisms of salt rejection and fast water-transport by calculating the free-energy landscapes and electrostatic potential profiles. A collective diffusion model accurately predicts the water permeability obtained from the simulations over a wide range of pressure gradients. We propose a method to calculate the osmotic water permeability from the equilibrium simulation data and find that it is very high for the PNT membrane. These remarkable properties of PNT can be applied in various nanofluidic applications, such as ion-selective channels, ionic transistors, sensing, molecular sieving, and blue energy harvesting. Phenine nanotube membranes completely rejects salts and permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration.</description><subject>Desalination</subject><subject>Energy harvesting</subject><subject>Equilibrium</subject><subject>Fluidics</subject><subject>Free energy</subject><subject>Membranes</subject><subject>Molecular dynamics</subject><subject>Nanofluids</subject><subject>Nanotubes</subject><subject>Osmosis</subject><subject>Permeability</subject><subject>Pressure gradients</subject><subject>Simulation</subject><subject>Transistors</subject><subject>Water purification</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0U1Lw0AQBuBFFFs_Lt6VgBcRojvdr-RYqlWhoId6DpvNxKYkm7ibIP57V1sreJqFeXYY3iHkDOgNUJbeFmA6yoVQeo-MgUsWpzTh-7u3kiNy5P2aUgoC2CEZMcET4GoyJvPXunc6XlVvq6hD16DOa4y6FdrKYmS1bfshx6jBJnfaoo_K1kUfukcXFeh1XVndV609IQelrj2ebusxWc7vl7PHePH88DSbLmLDmOpjkKooTKJZWcBEKoAJz0VKGQojaZrmiJwrw0sppRJU5yWCSBKgggqjecqOydVmbOfa9wF9nzWVN1jXYbV28NlEivBRAmeBXv6j63ZwNiwXlIRUqYTzoK43yrjWe4dl1rmq0e4zA5p9h5vdwezlJ9xpwBfbkUPeYLGjv2kGcL4Bzptd9-867AssDHzh</recordid><startdate>20220511</startdate><enddate>20220511</enddate><creator>Naskar, Supriyo</creator><creator>Sahoo, Anil Kumar</creator><creator>Moid, Mohd</creator><creator>Maiti, Prabal K</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3690-6483</orcidid><orcidid>https://orcid.org/0000-0001-7769-4774</orcidid><orcidid>https://orcid.org/0000-0002-4563-6833</orcidid><orcidid>https://orcid.org/0000-0002-9956-1136</orcidid></search><sort><creationdate>20220511</creationdate><title>Ultra-high permeable phenine nanotube membranes for water desalination</title><author>Naskar, Supriyo ; Sahoo, Anil Kumar ; Moid, Mohd ; Maiti, Prabal K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-167ddc8a3fd12671124b5903e5c6099bee447c4f666750abfe158810505ca493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Desalination</topic><topic>Energy harvesting</topic><topic>Equilibrium</topic><topic>Fluidics</topic><topic>Free energy</topic><topic>Membranes</topic><topic>Molecular dynamics</topic><topic>Nanofluids</topic><topic>Nanotubes</topic><topic>Osmosis</topic><topic>Permeability</topic><topic>Pressure gradients</topic><topic>Simulation</topic><topic>Transistors</topic><topic>Water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naskar, Supriyo</creatorcontrib><creatorcontrib>Sahoo, Anil Kumar</creatorcontrib><creatorcontrib>Moid, Mohd</creatorcontrib><creatorcontrib>Maiti, Prabal K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naskar, Supriyo</au><au>Sahoo, Anil Kumar</au><au>Moid, Mohd</au><au>Maiti, Prabal K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-high permeable phenine nanotube membranes for water desalination</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2022-05-11</date><risdate>2022</risdate><volume>24</volume><issue>18</issue><spage>11196</spage><epage>1125</epage><pages>11196-1125</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Nanopore desalination technology hinges on high water-permeable membranes which, at the same time, block ions efficiently. In this study, we consider a recently synthesized [ Science 363 , 151-155 (2019)] phenine nanotube (PNT) for water desalination applications. Using both equilibrium and non-equilibrium molecular dynamics simulations, we show that the PNT membrane completely rejects salts, but permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration. We provide the microscopic mechanisms of salt rejection and fast water-transport by calculating the free-energy landscapes and electrostatic potential profiles. A collective diffusion model accurately predicts the water permeability obtained from the simulations over a wide range of pressure gradients. We propose a method to calculate the osmotic water permeability from the equilibrium simulation data and find that it is very high for the PNT membrane. These remarkable properties of PNT can be applied in various nanofluidic applications, such as ion-selective channels, ionic transistors, sensing, molecular sieving, and blue energy harvesting. Phenine nanotube membranes completely rejects salts and permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35481472</pmid><doi>10.1039/d1cp04557a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3690-6483</orcidid><orcidid>https://orcid.org/0000-0001-7769-4774</orcidid><orcidid>https://orcid.org/0000-0002-4563-6833</orcidid><orcidid>https://orcid.org/0000-0002-9956-1136</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2022-05, Vol.24 (18), p.11196-1125
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_journals_2661977844
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Desalination
Energy harvesting
Equilibrium
Fluidics
Free energy
Membranes
Molecular dynamics
Nanofluids
Nanotubes
Osmosis
Permeability
Pressure gradients
Simulation
Transistors
Water purification
title Ultra-high permeable phenine nanotube membranes for water desalination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-high%20permeable%20phenine%20nanotube%20membranes%20for%20water%20desalination&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Naskar,%20Supriyo&rft.date=2022-05-11&rft.volume=24&rft.issue=18&rft.spage=11196&rft.epage=1125&rft.pages=11196-1125&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp04557a&rft_dat=%3Cproquest_cross%3E2661977844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661977844&rft_id=info:pmid/35481472&rfr_iscdi=true