Ultra-high permeable phenine nanotube membranes for water desalination
Nanopore desalination technology hinges on high water-permeable membranes which, at the same time, block ions efficiently. In this study, we consider a recently synthesized [ Science 363 , 151-155 (2019)] phenine nanotube (PNT) for water desalination applications. Using both equilibrium and non-equi...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2022-05, Vol.24 (18), p.11196-1125 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1125 |
---|---|
container_issue | 18 |
container_start_page | 11196 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 24 |
creator | Naskar, Supriyo Sahoo, Anil Kumar Moid, Mohd Maiti, Prabal K |
description | Nanopore desalination technology hinges on high water-permeable membranes which, at the same time, block ions efficiently. In this study, we consider a recently synthesized [
Science
363
, 151-155 (2019)] phenine nanotube (PNT) for water desalination applications. Using both equilibrium and non-equilibrium molecular dynamics simulations, we show that the PNT membrane completely rejects salts, but permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration. We provide the microscopic mechanisms of salt rejection and fast water-transport by calculating the free-energy landscapes and electrostatic potential profiles. A collective diffusion model accurately predicts the water permeability obtained from the simulations over a wide range of pressure gradients. We propose a method to calculate the osmotic water permeability from the equilibrium simulation data and find that it is very high for the PNT membrane. These remarkable properties of PNT can be applied in various nanofluidic applications, such as ion-selective channels, ionic transistors, sensing, molecular sieving, and blue energy harvesting.
Phenine nanotube membranes completely rejects salts and permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration. |
doi_str_mv | 10.1039/d1cp04557a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661977844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661977844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-167ddc8a3fd12671124b5903e5c6099bee447c4f666750abfe158810505ca493</originalsourceid><addsrcrecordid>eNpd0U1Lw0AQBuBFFFs_Lt6VgBcRojvdr-RYqlWhoId6DpvNxKYkm7ibIP57V1sreJqFeXYY3iHkDOgNUJbeFmA6yoVQeo-MgUsWpzTh-7u3kiNy5P2aUgoC2CEZMcET4GoyJvPXunc6XlVvq6hD16DOa4y6FdrKYmS1bfshx6jBJnfaoo_K1kUfukcXFeh1XVndV609IQelrj2ebusxWc7vl7PHePH88DSbLmLDmOpjkKooTKJZWcBEKoAJz0VKGQojaZrmiJwrw0sppRJU5yWCSBKgggqjecqOydVmbOfa9wF9nzWVN1jXYbV28NlEivBRAmeBXv6j63ZwNiwXlIRUqYTzoK43yrjWe4dl1rmq0e4zA5p9h5vdwezlJ9xpwBfbkUPeYLGjv2kGcL4Bzptd9-867AssDHzh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661977844</pqid></control><display><type>article</type><title>Ultra-high permeable phenine nanotube membranes for water desalination</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Naskar, Supriyo ; Sahoo, Anil Kumar ; Moid, Mohd ; Maiti, Prabal K</creator><creatorcontrib>Naskar, Supriyo ; Sahoo, Anil Kumar ; Moid, Mohd ; Maiti, Prabal K</creatorcontrib><description>Nanopore desalination technology hinges on high water-permeable membranes which, at the same time, block ions efficiently. In this study, we consider a recently synthesized [
Science
363
, 151-155 (2019)] phenine nanotube (PNT) for water desalination applications. Using both equilibrium and non-equilibrium molecular dynamics simulations, we show that the PNT membrane completely rejects salts, but permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration. We provide the microscopic mechanisms of salt rejection and fast water-transport by calculating the free-energy landscapes and electrostatic potential profiles. A collective diffusion model accurately predicts the water permeability obtained from the simulations over a wide range of pressure gradients. We propose a method to calculate the osmotic water permeability from the equilibrium simulation data and find that it is very high for the PNT membrane. These remarkable properties of PNT can be applied in various nanofluidic applications, such as ion-selective channels, ionic transistors, sensing, molecular sieving, and blue energy harvesting.
Phenine nanotube membranes completely rejects salts and permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp04557a</identifier><identifier>PMID: 35481472</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Desalination ; Energy harvesting ; Equilibrium ; Fluidics ; Free energy ; Membranes ; Molecular dynamics ; Nanofluids ; Nanotubes ; Osmosis ; Permeability ; Pressure gradients ; Simulation ; Transistors ; Water purification</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-05, Vol.24 (18), p.11196-1125</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-167ddc8a3fd12671124b5903e5c6099bee447c4f666750abfe158810505ca493</citedby><cites>FETCH-LOGICAL-c337t-167ddc8a3fd12671124b5903e5c6099bee447c4f666750abfe158810505ca493</cites><orcidid>0000-0002-3690-6483 ; 0000-0001-7769-4774 ; 0000-0002-4563-6833 ; 0000-0002-9956-1136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35481472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naskar, Supriyo</creatorcontrib><creatorcontrib>Sahoo, Anil Kumar</creatorcontrib><creatorcontrib>Moid, Mohd</creatorcontrib><creatorcontrib>Maiti, Prabal K</creatorcontrib><title>Ultra-high permeable phenine nanotube membranes for water desalination</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Nanopore desalination technology hinges on high water-permeable membranes which, at the same time, block ions efficiently. In this study, we consider a recently synthesized [
Science
363
, 151-155 (2019)] phenine nanotube (PNT) for water desalination applications. Using both equilibrium and non-equilibrium molecular dynamics simulations, we show that the PNT membrane completely rejects salts, but permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration. We provide the microscopic mechanisms of salt rejection and fast water-transport by calculating the free-energy landscapes and electrostatic potential profiles. A collective diffusion model accurately predicts the water permeability obtained from the simulations over a wide range of pressure gradients. We propose a method to calculate the osmotic water permeability from the equilibrium simulation data and find that it is very high for the PNT membrane. These remarkable properties of PNT can be applied in various nanofluidic applications, such as ion-selective channels, ionic transistors, sensing, molecular sieving, and blue energy harvesting.
Phenine nanotube membranes completely rejects salts and permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration.</description><subject>Desalination</subject><subject>Energy harvesting</subject><subject>Equilibrium</subject><subject>Fluidics</subject><subject>Free energy</subject><subject>Membranes</subject><subject>Molecular dynamics</subject><subject>Nanofluids</subject><subject>Nanotubes</subject><subject>Osmosis</subject><subject>Permeability</subject><subject>Pressure gradients</subject><subject>Simulation</subject><subject>Transistors</subject><subject>Water purification</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0U1Lw0AQBuBFFFs_Lt6VgBcRojvdr-RYqlWhoId6DpvNxKYkm7ibIP57V1sreJqFeXYY3iHkDOgNUJbeFmA6yoVQeo-MgUsWpzTh-7u3kiNy5P2aUgoC2CEZMcET4GoyJvPXunc6XlVvq6hD16DOa4y6FdrKYmS1bfshx6jBJnfaoo_K1kUfukcXFeh1XVndV609IQelrj2ebusxWc7vl7PHePH88DSbLmLDmOpjkKooTKJZWcBEKoAJz0VKGQojaZrmiJwrw0sppRJU5yWCSBKgggqjecqOydVmbOfa9wF9nzWVN1jXYbV28NlEivBRAmeBXv6j63ZwNiwXlIRUqYTzoK43yrjWe4dl1rmq0e4zA5p9h5vdwezlJ9xpwBfbkUPeYLGjv2kGcL4Bzptd9-867AssDHzh</recordid><startdate>20220511</startdate><enddate>20220511</enddate><creator>Naskar, Supriyo</creator><creator>Sahoo, Anil Kumar</creator><creator>Moid, Mohd</creator><creator>Maiti, Prabal K</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3690-6483</orcidid><orcidid>https://orcid.org/0000-0001-7769-4774</orcidid><orcidid>https://orcid.org/0000-0002-4563-6833</orcidid><orcidid>https://orcid.org/0000-0002-9956-1136</orcidid></search><sort><creationdate>20220511</creationdate><title>Ultra-high permeable phenine nanotube membranes for water desalination</title><author>Naskar, Supriyo ; Sahoo, Anil Kumar ; Moid, Mohd ; Maiti, Prabal K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-167ddc8a3fd12671124b5903e5c6099bee447c4f666750abfe158810505ca493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Desalination</topic><topic>Energy harvesting</topic><topic>Equilibrium</topic><topic>Fluidics</topic><topic>Free energy</topic><topic>Membranes</topic><topic>Molecular dynamics</topic><topic>Nanofluids</topic><topic>Nanotubes</topic><topic>Osmosis</topic><topic>Permeability</topic><topic>Pressure gradients</topic><topic>Simulation</topic><topic>Transistors</topic><topic>Water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naskar, Supriyo</creatorcontrib><creatorcontrib>Sahoo, Anil Kumar</creatorcontrib><creatorcontrib>Moid, Mohd</creatorcontrib><creatorcontrib>Maiti, Prabal K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naskar, Supriyo</au><au>Sahoo, Anil Kumar</au><au>Moid, Mohd</au><au>Maiti, Prabal K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-high permeable phenine nanotube membranes for water desalination</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2022-05-11</date><risdate>2022</risdate><volume>24</volume><issue>18</issue><spage>11196</spage><epage>1125</epage><pages>11196-1125</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Nanopore desalination technology hinges on high water-permeable membranes which, at the same time, block ions efficiently. In this study, we consider a recently synthesized [
Science
363
, 151-155 (2019)] phenine nanotube (PNT) for water desalination applications. Using both equilibrium and non-equilibrium molecular dynamics simulations, we show that the PNT membrane completely rejects salts, but permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration. We provide the microscopic mechanisms of salt rejection and fast water-transport by calculating the free-energy landscapes and electrostatic potential profiles. A collective diffusion model accurately predicts the water permeability obtained from the simulations over a wide range of pressure gradients. We propose a method to calculate the osmotic water permeability from the equilibrium simulation data and find that it is very high for the PNT membrane. These remarkable properties of PNT can be applied in various nanofluidic applications, such as ion-selective channels, ionic transistors, sensing, molecular sieving, and blue energy harvesting.
Phenine nanotube membranes completely rejects salts and permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35481472</pmid><doi>10.1039/d1cp04557a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3690-6483</orcidid><orcidid>https://orcid.org/0000-0001-7769-4774</orcidid><orcidid>https://orcid.org/0000-0002-4563-6833</orcidid><orcidid>https://orcid.org/0000-0002-9956-1136</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2022-05, Vol.24 (18), p.11196-1125 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_journals_2661977844 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Desalination Energy harvesting Equilibrium Fluidics Free energy Membranes Molecular dynamics Nanofluids Nanotubes Osmosis Permeability Pressure gradients Simulation Transistors Water purification |
title | Ultra-high permeable phenine nanotube membranes for water desalination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-high%20permeable%20phenine%20nanotube%20membranes%20for%20water%20desalination&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Naskar,%20Supriyo&rft.date=2022-05-11&rft.volume=24&rft.issue=18&rft.spage=11196&rft.epage=1125&rft.pages=11196-1125&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp04557a&rft_dat=%3Cproquest_cross%3E2661977844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661977844&rft_id=info:pmid/35481472&rfr_iscdi=true |