Comparison of mutual information and its point similarity implementation for image registration

Mutual information (MI) is one of the most popular and widely used similarity measures in image registration. In traditional registration processes, MI is computed in each optimization step to measure the similarity between the reference image and the moving image. The presumption is that whenever M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2021-06, Vol.11 (3), p.2613
Hauptverfasser: Chehade, Wassim El Hajj, Rogelj, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 2613
container_title International journal of electrical and computer engineering (Malacca, Malacca)
container_volume 11
creator Chehade, Wassim El Hajj
Rogelj, Peter
description Mutual information (MI) is one of the most popular and widely used similarity measures in image registration. In traditional registration processes, MI is computed in each optimization step to measure the similarity between the reference image and the moving image. The presumption is that whenever MI reaches its highest value, this corresponds to the best match. This paper shows that this presumption is not always valid and this leads to registration error. To overcome this problem, we propose to use point similarity measures (PSM) which in contrast to MI allows constant intensity dependence estimates called point similarity functions (PSF). We compare MI and PSM similarity measures in terms of registration misalignment errors. The result of the comparison confirms that the best alignment is not at the highest value of MI but near to it and it shows that PSM performs better than MI if PSF matches the correct intensity dependence between images. This opens a new direction of research towards the improvement of image registration.
doi_str_mv 10.11591/ijece.v11i3.pp2613-2620
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661962834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661962834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c202t-f4a8aec544d433dcd48fef28a78bb965d3a7d8f3328b41f9dffd3d534867ecc13</originalsourceid><addsrcrecordid>eNotkMtqxCAUhqW00GE67yB0nam3qFmWoTcYmE27FhN1cEhiqqYwb1-bdHUOP9-58AEAMdpjXDf4yV9sZ_c_GHu6nybCMa0IJ-gGbIggpCK1kLelR1JWUiB5D3Yp-RYxJhgSvN4AdQjDpKNPYYTBwWHOs-6hH12Ig86-pHo00OcEp-DHDJMffF_4fIV-mHo72DGvXJkokT5bGO3ZpxyX-AHcOd0nu_uvW_D1-vJ5eK-Op7ePw_Ox6ggiuXJMS227mjHDKDWdYdJZR6QWsm0bXhuqhZGOUiJbhl1jnDPU1JRJLmzXYboFj-veKYbv2aasLmGOYzmpCOe44URSVii5Ul0MKUXr1BTLz_GqMFKLUbUYVYtRtRpVf0bpL03Lb6c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661962834</pqid></control><display><type>article</type><title>Comparison of mutual information and its point similarity implementation for image registration</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chehade, Wassim El Hajj ; Rogelj, Peter</creator><creatorcontrib>Chehade, Wassim El Hajj ; Rogelj, Peter</creatorcontrib><description>Mutual information (MI) is one of the most popular and widely used similarity measures in image registration. In traditional registration processes, MI is computed in each optimization step to measure the similarity between the reference image and the moving image. The presumption is that whenever MI reaches its highest value, this corresponds to the best match. This paper shows that this presumption is not always valid and this leads to registration error. To overcome this problem, we propose to use point similarity measures (PSM) which in contrast to MI allows constant intensity dependence estimates called point similarity functions (PSF). We compare MI and PSM similarity measures in terms of registration misalignment errors. The result of the comparison confirms that the best alignment is not at the highest value of MI but near to it and it shows that PSM performs better than MI if PSF matches the correct intensity dependence between images. This opens a new direction of research towards the improvement of image registration.</description><identifier>ISSN: 2088-8708</identifier><identifier>EISSN: 2722-2578</identifier><identifier>EISSN: 2088-8708</identifier><identifier>DOI: 10.11591/ijece.v11i3.pp2613-2620</identifier><language>eng</language><publisher>Yogyakarta: IAES Institute of Advanced Engineering and Science</publisher><subject>Image registration ; Misalignment ; Optimization ; Registration ; Similarity ; Similarity measures</subject><ispartof>International journal of electrical and computer engineering (Malacca, Malacca), 2021-06, Vol.11 (3), p.2613</ispartof><rights>Copyright IAES Institute of Advanced Engineering and Science Jun 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c202t-f4a8aec544d433dcd48fef28a78bb965d3a7d8f3328b41f9dffd3d534867ecc13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chehade, Wassim El Hajj</creatorcontrib><creatorcontrib>Rogelj, Peter</creatorcontrib><title>Comparison of mutual information and its point similarity implementation for image registration</title><title>International journal of electrical and computer engineering (Malacca, Malacca)</title><description>Mutual information (MI) is one of the most popular and widely used similarity measures in image registration. In traditional registration processes, MI is computed in each optimization step to measure the similarity between the reference image and the moving image. The presumption is that whenever MI reaches its highest value, this corresponds to the best match. This paper shows that this presumption is not always valid and this leads to registration error. To overcome this problem, we propose to use point similarity measures (PSM) which in contrast to MI allows constant intensity dependence estimates called point similarity functions (PSF). We compare MI and PSM similarity measures in terms of registration misalignment errors. The result of the comparison confirms that the best alignment is not at the highest value of MI but near to it and it shows that PSM performs better than MI if PSF matches the correct intensity dependence between images. This opens a new direction of research towards the improvement of image registration.</description><subject>Image registration</subject><subject>Misalignment</subject><subject>Optimization</subject><subject>Registration</subject><subject>Similarity</subject><subject>Similarity measures</subject><issn>2088-8708</issn><issn>2722-2578</issn><issn>2088-8708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkMtqxCAUhqW00GE67yB0nam3qFmWoTcYmE27FhN1cEhiqqYwb1-bdHUOP9-58AEAMdpjXDf4yV9sZ_c_GHu6nybCMa0IJ-gGbIggpCK1kLelR1JWUiB5D3Yp-RYxJhgSvN4AdQjDpKNPYYTBwWHOs-6hH12Ig86-pHo00OcEp-DHDJMffF_4fIV-mHo72DGvXJkokT5bGO3ZpxyX-AHcOd0nu_uvW_D1-vJ5eK-Op7ePw_Ox6ggiuXJMS227mjHDKDWdYdJZR6QWsm0bXhuqhZGOUiJbhl1jnDPU1JRJLmzXYboFj-veKYbv2aasLmGOYzmpCOe44URSVii5Ul0MKUXr1BTLz_GqMFKLUbUYVYtRtRpVf0bpL03Lb6c</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Chehade, Wassim El Hajj</creator><creator>Rogelj, Peter</creator><general>IAES Institute of Advanced Engineering and Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210601</creationdate><title>Comparison of mutual information and its point similarity implementation for image registration</title><author>Chehade, Wassim El Hajj ; Rogelj, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c202t-f4a8aec544d433dcd48fef28a78bb965d3a7d8f3328b41f9dffd3d534867ecc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Image registration</topic><topic>Misalignment</topic><topic>Optimization</topic><topic>Registration</topic><topic>Similarity</topic><topic>Similarity measures</topic><toplevel>online_resources</toplevel><creatorcontrib>Chehade, Wassim El Hajj</creatorcontrib><creatorcontrib>Rogelj, Peter</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chehade, Wassim El Hajj</au><au>Rogelj, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of mutual information and its point similarity implementation for image registration</atitle><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>11</volume><issue>3</issue><spage>2613</spage><pages>2613-</pages><issn>2088-8708</issn><eissn>2722-2578</eissn><eissn>2088-8708</eissn><abstract>Mutual information (MI) is one of the most popular and widely used similarity measures in image registration. In traditional registration processes, MI is computed in each optimization step to measure the similarity between the reference image and the moving image. The presumption is that whenever MI reaches its highest value, this corresponds to the best match. This paper shows that this presumption is not always valid and this leads to registration error. To overcome this problem, we propose to use point similarity measures (PSM) which in contrast to MI allows constant intensity dependence estimates called point similarity functions (PSF). We compare MI and PSM similarity measures in terms of registration misalignment errors. The result of the comparison confirms that the best alignment is not at the highest value of MI but near to it and it shows that PSM performs better than MI if PSF matches the correct intensity dependence between images. This opens a new direction of research towards the improvement of image registration.</abstract><cop>Yogyakarta</cop><pub>IAES Institute of Advanced Engineering and Science</pub><doi>10.11591/ijece.v11i3.pp2613-2620</doi></addata></record>
fulltext fulltext
identifier ISSN: 2088-8708
ispartof International journal of electrical and computer engineering (Malacca, Malacca), 2021-06, Vol.11 (3), p.2613
issn 2088-8708
2722-2578
2088-8708
language eng
recordid cdi_proquest_journals_2661962834
source EZB-FREE-00999 freely available EZB journals
subjects Image registration
Misalignment
Optimization
Registration
Similarity
Similarity measures
title Comparison of mutual information and its point similarity implementation for image registration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20mutual%20information%20and%20its%20point%20similarity%20implementation%20for%20image%20registration&rft.jtitle=International%20journal%20of%20electrical%20and%20computer%20engineering%20(Malacca,%20Malacca)&rft.au=Chehade,%20Wassim%20El%20Hajj&rft.date=2021-06-01&rft.volume=11&rft.issue=3&rft.spage=2613&rft.pages=2613-&rft.issn=2088-8708&rft.eissn=2722-2578&rft_id=info:doi/10.11591/ijece.v11i3.pp2613-2620&rft_dat=%3Cproquest_cross%3E2661962834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661962834&rft_id=info:pmid/&rfr_iscdi=true