Convergence of symmetric Markov chains on

For each n let be a continuous time symmetric Markov chain with state space . Conditions in terms of the conductances are given for the convergence of the to a symmetric Markov process Y t on . We have weak convergence of for every t 0 and every starting point. The limit process Y has a continuous p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2010-09, Vol.148 (1-2), p.107-140
Hauptverfasser: Bass, Richard F., Kumagai, Takashi, Uemura, Toshihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140
container_issue 1-2
container_start_page 107
container_title Probability theory and related fields
container_volume 148
creator Bass, Richard F.
Kumagai, Takashi
Uemura, Toshihiro
description For each n let be a continuous time symmetric Markov chain with state space . Conditions in terms of the conductances are given for the convergence of the to a symmetric Markov process Y t on . We have weak convergence of for every t 0 and every starting point. The limit process Y has a continuous part and may also have jumps.
doi_str_mv 10.1007/s00440-009-0224-8
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2661276466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661276466</sourcerecordid><originalsourceid>FETCH-LOGICAL-p718-7f348be3f36cbce4bb93665cc29b417015ba3b10452efdb29f05799114ca700b3</originalsourceid><addsrcrecordid>eNpF0M1KAzEUhuEgCo7VC3A34MpF9Jwkk5-lDFqFipvuwyQmdarN1KQtePdOGcHV2bycDx5CrhHuEEDdFwAhgAIYCowJqk9IhYIzykCKU1IBKk01NHhOLkpZAwDjglXkth3SIeRVSD7UQ6zLz2YTdrn39WuXP4dD7T-6PpV6SJfkLHZfJVz93RlZPj0u22e6eJu_tA8LulWoqYpcaBd45NI7H4RzhkvZeM-ME6gAG9dxhyAaFuK7YyZCo4xBFL5TAI7PyM30dpuH730oO7se9jmNi5ZJiUxJIeVYsakq29ynVcj_FYI9ithJxI4i9ihiNf8FniBR2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661276466</pqid></control><display><type>article</type><title>Convergence of symmetric Markov chains on</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bass, Richard F. ; Kumagai, Takashi ; Uemura, Toshihiro</creator><creatorcontrib>Bass, Richard F. ; Kumagai, Takashi ; Uemura, Toshihiro</creatorcontrib><description>For each n let be a continuous time symmetric Markov chain with state space . Conditions in terms of the conductances are given for the convergence of the to a symmetric Markov process Y t on . We have weak convergence of for every t 0 and every starting point. The limit process Y has a continuous part and may also have jumps.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-009-0224-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Central limit theorem ; Convergence ; Economics ; Finance ; Insurance ; Management ; Markov chains ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Statistics for Business ; Theoretical</subject><ispartof>Probability theory and related fields, 2010-09, Vol.148 (1-2), p.107-140</ispartof><rights>Springer-Verlag 2009</rights><rights>Springer-Verlag 2009.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p718-7f348be3f36cbce4bb93665cc29b417015ba3b10452efdb29f05799114ca700b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-009-0224-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-009-0224-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bass, Richard F.</creatorcontrib><creatorcontrib>Kumagai, Takashi</creatorcontrib><creatorcontrib>Uemura, Toshihiro</creatorcontrib><title>Convergence of symmetric Markov chains on</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>For each n let be a continuous time symmetric Markov chain with state space . Conditions in terms of the conductances are given for the convergence of the to a symmetric Markov process Y t on . We have weak convergence of for every t 0 and every starting point. The limit process Y has a continuous part and may also have jumps.</description><subject>Central limit theorem</subject><subject>Convergence</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Markov chains</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Statistics for Business</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpF0M1KAzEUhuEgCo7VC3A34MpF9Jwkk5-lDFqFipvuwyQmdarN1KQtePdOGcHV2bycDx5CrhHuEEDdFwAhgAIYCowJqk9IhYIzykCKU1IBKk01NHhOLkpZAwDjglXkth3SIeRVSD7UQ6zLz2YTdrn39WuXP4dD7T-6PpV6SJfkLHZfJVz93RlZPj0u22e6eJu_tA8LulWoqYpcaBd45NI7H4RzhkvZeM-ME6gAG9dxhyAaFuK7YyZCo4xBFL5TAI7PyM30dpuH730oO7se9jmNi5ZJiUxJIeVYsakq29ynVcj_FYI9ithJxI4i9ihiNf8FniBR2A</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Bass, Richard F.</creator><creator>Kumagai, Takashi</creator><creator>Uemura, Toshihiro</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>Convergence of symmetric Markov chains on</title><author>Bass, Richard F. ; Kumagai, Takashi ; Uemura, Toshihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p718-7f348be3f36cbce4bb93665cc29b417015ba3b10452efdb29f05799114ca700b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Central limit theorem</topic><topic>Convergence</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Markov chains</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Statistics for Business</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bass, Richard F.</creatorcontrib><creatorcontrib>Kumagai, Takashi</creatorcontrib><creatorcontrib>Uemura, Toshihiro</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bass, Richard F.</au><au>Kumagai, Takashi</au><au>Uemura, Toshihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of symmetric Markov chains on</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>148</volume><issue>1-2</issue><spage>107</spage><epage>140</epage><pages>107-140</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><abstract>For each n let be a continuous time symmetric Markov chain with state space . Conditions in terms of the conductances are given for the convergence of the to a symmetric Markov process Y t on . We have weak convergence of for every t 0 and every starting point. The limit process Y has a continuous part and may also have jumps.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00440-009-0224-8</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2010-09, Vol.148 (1-2), p.107-140
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_journals_2661276466
source EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Central limit theorem
Convergence
Economics
Finance
Insurance
Management
Markov chains
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Probability
Probability Theory and Stochastic Processes
Quantitative Finance
Statistics for Business
Theoretical
title Convergence of symmetric Markov chains on
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20symmetric%20Markov%20chains%20on&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Bass,%20Richard%20F.&rft.date=2010-09-01&rft.volume=148&rft.issue=1-2&rft.spage=107&rft.epage=140&rft.pages=107-140&rft.issn=0178-8051&rft.eissn=1432-2064&rft_id=info:doi/10.1007/s00440-009-0224-8&rft_dat=%3Cproquest_sprin%3E2661276466%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661276466&rft_id=info:pmid/&rfr_iscdi=true