Stochastic heat equation with random coefficients
We prove the existence of a unique solution for a one-dimensional stochastic parabolic partial differential equation with random and adapted coefficients perturbed by a two-parameter white noise. The proof is based on a maximal inequality for the Skorohod integral deduced from Itô's formula for...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 1999-08, Vol.115 (1), p.41-94 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | Probability theory and related fields |
container_volume | 115 |
creator | ALOS, E LEON, J. A NUALART, D |
description | We prove the existence of a unique solution for a one-dimensional stochastic parabolic partial differential equation with random and adapted coefficients perturbed by a two-parameter white noise. The proof is based on a maximal inequality for the Skorohod integral deduced from Itô's formula for this anticipating stochastic integral. |
doi_str_mv | 10.1007/s004400050236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661272105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661272105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-54aad083b665e02fda95fc2e8005e1c6c3fcaa8cd49c42ab6c898b926806dac93</originalsourceid><addsrcrecordid>eNpVkEtLAzEQx4MoWKtH7wt6XZ08mz1K8QUFD-p5mc4mNKXdtEkW8du70oJ4mstv_i_GrjnccYDZfQZQCgA0CGlO2IQrKWoBRp2yCfCZrS1ofs4ucl6PlJBKTBh_L5FWmEugauWwVG4_YAmxr75CWVUJ-y5uK4rO-0DB9SVfsjOPm-yujnfKPp8eP-Yv9eLt-XX-sKhJSl5qrRA7sHJpjHYgfIeN9iScHfM5ToakJ0RLnWpICVwaso1dNsJYMB1SI6fs5qC7S3E_uFzadRxSP1q2whguZoKDHqn6QFGKOSfn210KW0zfLYf2d5X23yojf3tUxUy48WNBCvnvqbEgtZE_-zZgZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661272105</pqid></control><display><type>article</type><title>Stochastic heat equation with random coefficients</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>ALOS, E ; LEON, J. A ; NUALART, D</creator><creatorcontrib>ALOS, E ; LEON, J. A ; NUALART, D</creatorcontrib><description>We prove the existence of a unique solution for a one-dimensional stochastic parabolic partial differential equation with random and adapted coefficients perturbed by a two-parameter white noise. The proof is based on a maximal inequality for the Skorohod integral deduced from Itô's formula for this anticipating stochastic integral.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s004400050236</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Exact sciences and technology ; Mathematics ; Parabolic differential equations ; Partial differential equations ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Stochastic analysis ; Thermodynamics ; White noise</subject><ispartof>Probability theory and related fields, 1999-08, Vol.115 (1), p.41-94</ispartof><rights>1999 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 1999.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-54aad083b665e02fda95fc2e8005e1c6c3fcaa8cd49c42ab6c898b926806dac93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1980356$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ALOS, E</creatorcontrib><creatorcontrib>LEON, J. A</creatorcontrib><creatorcontrib>NUALART, D</creatorcontrib><title>Stochastic heat equation with random coefficients</title><title>Probability theory and related fields</title><description>We prove the existence of a unique solution for a one-dimensional stochastic parabolic partial differential equation with random and adapted coefficients perturbed by a two-parameter white noise. The proof is based on a maximal inequality for the Skorohod integral deduced from Itô's formula for this anticipating stochastic integral.</description><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Parabolic differential equations</subject><subject>Partial differential equations</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic analysis</subject><subject>Thermodynamics</subject><subject>White noise</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkEtLAzEQx4MoWKtH7wt6XZ08mz1K8QUFD-p5mc4mNKXdtEkW8du70oJ4mstv_i_GrjnccYDZfQZQCgA0CGlO2IQrKWoBRp2yCfCZrS1ofs4ucl6PlJBKTBh_L5FWmEugauWwVG4_YAmxr75CWVUJ-y5uK4rO-0DB9SVfsjOPm-yujnfKPp8eP-Yv9eLt-XX-sKhJSl5qrRA7sHJpjHYgfIeN9iScHfM5ToakJ0RLnWpICVwaso1dNsJYMB1SI6fs5qC7S3E_uFzadRxSP1q2whguZoKDHqn6QFGKOSfn210KW0zfLYf2d5X23yojf3tUxUy48WNBCvnvqbEgtZE_-zZgZQ</recordid><startdate>19990801</startdate><enddate>19990801</enddate><creator>ALOS, E</creator><creator>LEON, J. A</creator><creator>NUALART, D</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19990801</creationdate><title>Stochastic heat equation with random coefficients</title><author>ALOS, E ; LEON, J. A ; NUALART, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-54aad083b665e02fda95fc2e8005e1c6c3fcaa8cd49c42ab6c898b926806dac93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Parabolic differential equations</topic><topic>Partial differential equations</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic analysis</topic><topic>Thermodynamics</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ALOS, E</creatorcontrib><creatorcontrib>LEON, J. A</creatorcontrib><creatorcontrib>NUALART, D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ALOS, E</au><au>LEON, J. A</au><au>NUALART, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic heat equation with random coefficients</atitle><jtitle>Probability theory and related fields</jtitle><date>1999-08-01</date><risdate>1999</risdate><volume>115</volume><issue>1</issue><spage>41</spage><epage>94</epage><pages>41-94</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>We prove the existence of a unique solution for a one-dimensional stochastic parabolic partial differential equation with random and adapted coefficients perturbed by a two-parameter white noise. The proof is based on a maximal inequality for the Skorohod integral deduced from Itô's formula for this anticipating stochastic integral.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s004400050236</doi><tpages>54</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-8051 |
ispartof | Probability theory and related fields, 1999-08, Vol.115 (1), p.41-94 |
issn | 0178-8051 1432-2064 |
language | eng |
recordid | cdi_proquest_journals_2661272105 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Exact sciences and technology Mathematics Parabolic differential equations Partial differential equations Probability Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Stochastic analysis Thermodynamics White noise |
title | Stochastic heat equation with random coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20heat%20equation%20with%20random%20coefficients&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=ALOS,%20E&rft.date=1999-08-01&rft.volume=115&rft.issue=1&rft.spage=41&rft.epage=94&rft.pages=41-94&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s004400050236&rft_dat=%3Cproquest_cross%3E2661272105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661272105&rft_id=info:pmid/&rfr_iscdi=true |