On the regularity of the distribution of the maximum of one-parameter Gaussian processes

The main result in this paper states that if a one-parameter Gaussian process has C2k paths and satisfies a non-degeneracy condition, then the distribution of its maximum on a compact interval is of class Ck. The methods leading to this theorem permit also to give bounds on the successive derivative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2001, Vol.119 (1), p.70-98
Hauptverfasser: AZAÏS, Jean-Marc, WSCHEBOR, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 1
container_start_page 70
container_title Probability theory and related fields
container_volume 119
creator AZAÏS, Jean-Marc
WSCHEBOR, Mario
description The main result in this paper states that if a one-parameter Gaussian process has C2k paths and satisfies a non-degeneracy condition, then the distribution of its maximum on a compact interval is of class Ck. The methods leading to this theorem permit also to give bounds on the successive derivatives of the distribution of the maximum and to study their asymptotic behaviour as the level tends to infinity.
doi_str_mv 10.1007/PL00012739
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661269095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661269095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-b0adace313b8f58fde1c8244c8df47bb60945b612a386498aceb97d6883790093</originalsourceid><addsrcrecordid>eNpNkN1LwzAUxYMoOKcv_gUF34TqzUfT5FGGTmEwHxR8K0maasbaztwU3H9v5_x6utzD75wDh5BzClcUoLx-XAAAZSXXB2RCBWc5AykOyQRoqXIFBT0mJ4irkWJcsAl5WXZZevNZ9K_D2sSQtlnffCl1wBSDHVLoux-tNR-hHdrd23c-35hoWp98zOZmQAymyzaxdx7R4yk5aswa_dn3nZLnu9un2X2-WM4fZjeL3HFGU27B1MZ5TrlVTaGa2lOnmBBO1Y0orZWgRWElZYYrKbQaWavLWirFSw2g-ZRc7HPH5vfBY6pW_RC7sbJicvRJDboYqcs95WKPGH1TbWJoTdxWFKrdctXfcv8iDTqzbqLpXMBfh6ZCSco_AZdYbLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661269095</pqid></control><display><type>article</type><title>On the regularity of the distribution of the maximum of one-parameter Gaussian processes</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>AZAÏS, Jean-Marc ; WSCHEBOR, Mario</creator><creatorcontrib>AZAÏS, Jean-Marc ; WSCHEBOR, Mario</creatorcontrib><description>The main result in this paper states that if a one-parameter Gaussian process has C2k paths and satisfies a non-degeneracy condition, then the distribution of its maximum on a compact interval is of class Ck. The methods leading to this theorem permit also to give bounds on the successive derivatives of the distribution of the maximum and to study their asymptotic behaviour as the level tends to infinity.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/PL00012739</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Asymptotic properties ; Distribution theory ; Exact sciences and technology ; Gaussian process ; Mathematics ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; Process parameters ; Sciences and techniques of general use ; Stochastic processes</subject><ispartof>Probability theory and related fields, 2001, Vol.119 (1), p.70-98</ispartof><rights>2001 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2000.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-b0adace313b8f58fde1c8244c8df47bb60945b612a386498aceb97d6883790093</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=914861$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>AZAÏS, Jean-Marc</creatorcontrib><creatorcontrib>WSCHEBOR, Mario</creatorcontrib><title>On the regularity of the distribution of the maximum of one-parameter Gaussian processes</title><title>Probability theory and related fields</title><description>The main result in this paper states that if a one-parameter Gaussian process has C2k paths and satisfies a non-degeneracy condition, then the distribution of its maximum on a compact interval is of class Ck. The methods leading to this theorem permit also to give bounds on the successive derivatives of the distribution of the maximum and to study their asymptotic behaviour as the level tends to infinity.</description><subject>Asymptotic properties</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Gaussian process</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Process parameters</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic processes</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkN1LwzAUxYMoOKcv_gUF34TqzUfT5FGGTmEwHxR8K0maasbaztwU3H9v5_x6utzD75wDh5BzClcUoLx-XAAAZSXXB2RCBWc5AykOyQRoqXIFBT0mJ4irkWJcsAl5WXZZevNZ9K_D2sSQtlnffCl1wBSDHVLoux-tNR-hHdrd23c-35hoWp98zOZmQAymyzaxdx7R4yk5aswa_dn3nZLnu9un2X2-WM4fZjeL3HFGU27B1MZ5TrlVTaGa2lOnmBBO1Y0orZWgRWElZYYrKbQaWavLWirFSw2g-ZRc7HPH5vfBY6pW_RC7sbJicvRJDboYqcs95WKPGH1TbWJoTdxWFKrdctXfcv8iDTqzbqLpXMBfh6ZCSco_AZdYbLo</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>AZAÏS, Jean-Marc</creator><creator>WSCHEBOR, Mario</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2001</creationdate><title>On the regularity of the distribution of the maximum of one-parameter Gaussian processes</title><author>AZAÏS, Jean-Marc ; WSCHEBOR, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-b0adace313b8f58fde1c8244c8df47bb60945b612a386498aceb97d6883790093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Asymptotic properties</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Gaussian process</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Process parameters</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AZAÏS, Jean-Marc</creatorcontrib><creatorcontrib>WSCHEBOR, Mario</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AZAÏS, Jean-Marc</au><au>WSCHEBOR, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the regularity of the distribution of the maximum of one-parameter Gaussian processes</atitle><jtitle>Probability theory and related fields</jtitle><date>2001</date><risdate>2001</risdate><volume>119</volume><issue>1</issue><spage>70</spage><epage>98</epage><pages>70-98</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>The main result in this paper states that if a one-parameter Gaussian process has C2k paths and satisfies a non-degeneracy condition, then the distribution of its maximum on a compact interval is of class Ck. The methods leading to this theorem permit also to give bounds on the successive derivatives of the distribution of the maximum and to study their asymptotic behaviour as the level tends to infinity.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/PL00012739</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2001, Vol.119 (1), p.70-98
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_journals_2661269095
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Asymptotic properties
Distribution theory
Exact sciences and technology
Gaussian process
Mathematics
Probability
Probability and statistics
Probability theory and stochastic processes
Process parameters
Sciences and techniques of general use
Stochastic processes
title On the regularity of the distribution of the maximum of one-parameter Gaussian processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20regularity%20of%20the%20distribution%20of%20the%20maximum%20of%20one-parameter%20Gaussian%20processes&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=AZA%C3%8FS,%20Jean-Marc&rft.date=2001&rft.volume=119&rft.issue=1&rft.spage=70&rft.epage=98&rft.pages=70-98&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/PL00012739&rft_dat=%3Cproquest_cross%3E2661269095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661269095&rft_id=info:pmid/&rfr_iscdi=true