On the regularity of the distribution of the maximum of one-parameter Gaussian processes
The main result in this paper states that if a one-parameter Gaussian process has C2k paths and satisfies a non-degeneracy condition, then the distribution of its maximum on a compact interval is of class Ck. The methods leading to this theorem permit also to give bounds on the successive derivative...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2001, Vol.119 (1), p.70-98 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | 1 |
container_start_page | 70 |
container_title | Probability theory and related fields |
container_volume | 119 |
creator | AZAÏS, Jean-Marc WSCHEBOR, Mario |
description | The main result in this paper states that if a one-parameter Gaussian process has C2k paths and satisfies a non-degeneracy condition, then the distribution of its maximum on a compact interval is of class Ck. The methods leading to this theorem permit also to give bounds on the successive derivatives of the distribution of the maximum and to study their asymptotic behaviour as the level tends to infinity. |
doi_str_mv | 10.1007/PL00012739 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661269095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661269095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-b0adace313b8f58fde1c8244c8df47bb60945b612a386498aceb97d6883790093</originalsourceid><addsrcrecordid>eNpNkN1LwzAUxYMoOKcv_gUF34TqzUfT5FGGTmEwHxR8K0maasbaztwU3H9v5_x6utzD75wDh5BzClcUoLx-XAAAZSXXB2RCBWc5AykOyQRoqXIFBT0mJ4irkWJcsAl5WXZZevNZ9K_D2sSQtlnffCl1wBSDHVLoux-tNR-hHdrd23c-35hoWp98zOZmQAymyzaxdx7R4yk5aswa_dn3nZLnu9un2X2-WM4fZjeL3HFGU27B1MZ5TrlVTaGa2lOnmBBO1Y0orZWgRWElZYYrKbQaWavLWirFSw2g-ZRc7HPH5vfBY6pW_RC7sbJicvRJDboYqcs95WKPGH1TbWJoTdxWFKrdctXfcv8iDTqzbqLpXMBfh6ZCSco_AZdYbLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661269095</pqid></control><display><type>article</type><title>On the regularity of the distribution of the maximum of one-parameter Gaussian processes</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>AZAÏS, Jean-Marc ; WSCHEBOR, Mario</creator><creatorcontrib>AZAÏS, Jean-Marc ; WSCHEBOR, Mario</creatorcontrib><description>The main result in this paper states that if a one-parameter Gaussian process has C2k paths and satisfies a non-degeneracy condition, then the distribution of its maximum on a compact interval is of class Ck. The methods leading to this theorem permit also to give bounds on the successive derivatives of the distribution of the maximum and to study their asymptotic behaviour as the level tends to infinity.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/PL00012739</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Asymptotic properties ; Distribution theory ; Exact sciences and technology ; Gaussian process ; Mathematics ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; Process parameters ; Sciences and techniques of general use ; Stochastic processes</subject><ispartof>Probability theory and related fields, 2001, Vol.119 (1), p.70-98</ispartof><rights>2001 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2000.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-b0adace313b8f58fde1c8244c8df47bb60945b612a386498aceb97d6883790093</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=914861$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>AZAÏS, Jean-Marc</creatorcontrib><creatorcontrib>WSCHEBOR, Mario</creatorcontrib><title>On the regularity of the distribution of the maximum of one-parameter Gaussian processes</title><title>Probability theory and related fields</title><description>The main result in this paper states that if a one-parameter Gaussian process has C2k paths and satisfies a non-degeneracy condition, then the distribution of its maximum on a compact interval is of class Ck. The methods leading to this theorem permit also to give bounds on the successive derivatives of the distribution of the maximum and to study their asymptotic behaviour as the level tends to infinity.</description><subject>Asymptotic properties</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Gaussian process</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Process parameters</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic processes</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkN1LwzAUxYMoOKcv_gUF34TqzUfT5FGGTmEwHxR8K0maasbaztwU3H9v5_x6utzD75wDh5BzClcUoLx-XAAAZSXXB2RCBWc5AykOyQRoqXIFBT0mJ4irkWJcsAl5WXZZevNZ9K_D2sSQtlnffCl1wBSDHVLoux-tNR-hHdrd23c-35hoWp98zOZmQAymyzaxdx7R4yk5aswa_dn3nZLnu9un2X2-WM4fZjeL3HFGU27B1MZ5TrlVTaGa2lOnmBBO1Y0orZWgRWElZYYrKbQaWavLWirFSw2g-ZRc7HPH5vfBY6pW_RC7sbJicvRJDboYqcs95WKPGH1TbWJoTdxWFKrdctXfcv8iDTqzbqLpXMBfh6ZCSco_AZdYbLo</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>AZAÏS, Jean-Marc</creator><creator>WSCHEBOR, Mario</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2001</creationdate><title>On the regularity of the distribution of the maximum of one-parameter Gaussian processes</title><author>AZAÏS, Jean-Marc ; WSCHEBOR, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-b0adace313b8f58fde1c8244c8df47bb60945b612a386498aceb97d6883790093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Asymptotic properties</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Gaussian process</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Process parameters</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AZAÏS, Jean-Marc</creatorcontrib><creatorcontrib>WSCHEBOR, Mario</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AZAÏS, Jean-Marc</au><au>WSCHEBOR, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the regularity of the distribution of the maximum of one-parameter Gaussian processes</atitle><jtitle>Probability theory and related fields</jtitle><date>2001</date><risdate>2001</risdate><volume>119</volume><issue>1</issue><spage>70</spage><epage>98</epage><pages>70-98</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>The main result in this paper states that if a one-parameter Gaussian process has C2k paths and satisfies a non-degeneracy condition, then the distribution of its maximum on a compact interval is of class Ck. The methods leading to this theorem permit also to give bounds on the successive derivatives of the distribution of the maximum and to study their asymptotic behaviour as the level tends to infinity.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/PL00012739</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-8051 |
ispartof | Probability theory and related fields, 2001, Vol.119 (1), p.70-98 |
issn | 0178-8051 1432-2064 |
language | eng |
recordid | cdi_proquest_journals_2661269095 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Asymptotic properties Distribution theory Exact sciences and technology Gaussian process Mathematics Probability Probability and statistics Probability theory and stochastic processes Process parameters Sciences and techniques of general use Stochastic processes |
title | On the regularity of the distribution of the maximum of one-parameter Gaussian processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20regularity%20of%20the%20distribution%20of%20the%20maximum%20of%20one-parameter%20Gaussian%20processes&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=AZA%C3%8FS,%20Jean-Marc&rft.date=2001&rft.volume=119&rft.issue=1&rft.spage=70&rft.epage=98&rft.pages=70-98&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/PL00012739&rft_dat=%3Cproquest_cross%3E2661269095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661269095&rft_id=info:pmid/&rfr_iscdi=true |