Exponential mixing properties of stochastic PDEs through asymptotic coupling

We consider parabolic stochastic partial differential equations driven by white noise in time. We prove exponential convergence of the transition probabilities towards a unique invariant measure under suitable conditions. These conditions amount essentially to the fact that the equation transmits th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2002-11, Vol.124 (3), p.345-368
1. Verfasser: HAIRER, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue 3
container_start_page 345
container_title Probability theory and related fields
container_volume 124
creator HAIRER, M
description We consider parabolic stochastic partial differential equations driven by white noise in time. We prove exponential convergence of the transition probabilities towards a unique invariant measure under suitable conditions. These conditions amount essentially to the fact that the equation transmits the noise to all its determining modes. Several examples are investigated, including some where the noise does not act on every determining mode directly.
doi_str_mv 10.1007/s004400200216
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661269004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>692074321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-af84104ab92a54152ec6cd4d0f5f1e83482dadbe339032ba1d12bef4bcfb2fdd3</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMoOKePvhfFx-rNTZq2jzLnBwz0QZ9LmiZbR9fUJIXtvzdjA_FBuHDh8jvnHg4h1xTuKUD-4AE4B8A4VJyQCeUMUwTBT8kEaF6kBWT0nFx4v4bIMI4TsphvB9vrPrSySzbttu2XyeDsoF1otU-sSXywaiV9aFXy8TT3SVg5Oy5XifS7zRDs_q7sOHRReUnOjOy8vjruKfl6nn_OXtPF-8vb7HGRKpaVIZWm4BS4rEuUGacZaiVUwxswmaG6YLzARja1ZqwEhrWkDcVaG14rU6NpGjYltwffmPR71D5Uazu6Pr6sUAiKooxNROrmX4oxFJijiFB6gJSz3jttqsG1G-l2FYVq32r1p9XI3x1NpVeyM072qvW_okjmJafsB1QOdws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>233262726</pqid></control><display><type>article</type><title>Exponential mixing properties of stochastic PDEs through asymptotic coupling</title><source>SpringerLink Journals - AutoHoldings</source><source>EBSCOhost Business Source Complete</source><creator>HAIRER, M</creator><creatorcontrib>HAIRER, M</creatorcontrib><description>We consider parabolic stochastic partial differential equations driven by white noise in time. We prove exponential convergence of the transition probabilities towards a unique invariant measure under suitable conditions. These conditions amount essentially to the fact that the equation transmits the noise to all its determining modes. Several examples are investigated, including some where the noise does not act on every determining mode directly.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s004400200216</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Exact sciences and technology ; Mathematical analysis ; Mathematics ; Noise ; Partial differential equations ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Stochastic analysis ; Transition probabilities ; White noise</subject><ispartof>Probability theory and related fields, 2002-11, Vol.124 (3), p.345-368</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright Springer-Verlag New York, Inc. Nov 2002</rights><rights>Springer-Verlag Berlin Heidelberg 2002.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-af84104ab92a54152ec6cd4d0f5f1e83482dadbe339032ba1d12bef4bcfb2fdd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14007941$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HAIRER, M</creatorcontrib><title>Exponential mixing properties of stochastic PDEs through asymptotic coupling</title><title>Probability theory and related fields</title><description>We consider parabolic stochastic partial differential equations driven by white noise in time. We prove exponential convergence of the transition probabilities towards a unique invariant measure under suitable conditions. These conditions amount essentially to the fact that the equation transmits the noise to all its determining modes. Several examples are investigated, including some where the noise does not act on every determining mode directly.</description><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Noise</subject><subject>Partial differential equations</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic analysis</subject><subject>Transition probabilities</subject><subject>White noise</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kN1LwzAUxYMoOKePvhfFx-rNTZq2jzLnBwz0QZ9LmiZbR9fUJIXtvzdjA_FBuHDh8jvnHg4h1xTuKUD-4AE4B8A4VJyQCeUMUwTBT8kEaF6kBWT0nFx4v4bIMI4TsphvB9vrPrSySzbttu2XyeDsoF1otU-sSXywaiV9aFXy8TT3SVg5Oy5XifS7zRDs_q7sOHRReUnOjOy8vjruKfl6nn_OXtPF-8vb7HGRKpaVIZWm4BS4rEuUGacZaiVUwxswmaG6YLzARja1ZqwEhrWkDcVaG14rU6NpGjYltwffmPR71D5Uazu6Pr6sUAiKooxNROrmX4oxFJijiFB6gJSz3jttqsG1G-l2FYVq32r1p9XI3x1NpVeyM072qvW_okjmJafsB1QOdws</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>HAIRER, M</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20021101</creationdate><title>Exponential mixing properties of stochastic PDEs through asymptotic coupling</title><author>HAIRER, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-af84104ab92a54152ec6cd4d0f5f1e83482dadbe339032ba1d12bef4bcfb2fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Noise</topic><topic>Partial differential equations</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic analysis</topic><topic>Transition probabilities</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HAIRER, M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HAIRER, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential mixing properties of stochastic PDEs through asymptotic coupling</atitle><jtitle>Probability theory and related fields</jtitle><date>2002-11-01</date><risdate>2002</risdate><volume>124</volume><issue>3</issue><spage>345</spage><epage>368</epage><pages>345-368</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>We consider parabolic stochastic partial differential equations driven by white noise in time. We prove exponential convergence of the transition probabilities towards a unique invariant measure under suitable conditions. These conditions amount essentially to the fact that the equation transmits the noise to all its determining modes. Several examples are investigated, including some where the noise does not act on every determining mode directly.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s004400200216</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2002-11, Vol.124 (3), p.345-368
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_journals_2661269004
source SpringerLink Journals - AutoHoldings; EBSCOhost Business Source Complete
subjects Exact sciences and technology
Mathematical analysis
Mathematics
Noise
Partial differential equations
Probability
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Stochastic analysis
Transition probabilities
White noise
title Exponential mixing properties of stochastic PDEs through asymptotic coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20mixing%20properties%20of%20stochastic%20PDEs%20through%20asymptotic%20coupling&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=HAIRER,%20M&rft.date=2002-11-01&rft.volume=124&rft.issue=3&rft.spage=345&rft.epage=368&rft.pages=345-368&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s004400200216&rft_dat=%3Cproquest_cross%3E692074321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=233262726&rft_id=info:pmid/&rfr_iscdi=true