Exponential mixing properties of stochastic PDEs through asymptotic coupling
We consider parabolic stochastic partial differential equations driven by white noise in time. We prove exponential convergence of the transition probabilities towards a unique invariant measure under suitable conditions. These conditions amount essentially to the fact that the equation transmits th...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2002-11, Vol.124 (3), p.345-368 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 368 |
---|---|
container_issue | 3 |
container_start_page | 345 |
container_title | Probability theory and related fields |
container_volume | 124 |
creator | HAIRER, M |
description | We consider parabolic stochastic partial differential equations driven by white noise in time. We prove exponential convergence of the transition probabilities towards a unique invariant measure under suitable conditions. These conditions amount essentially to the fact that the equation transmits the noise to all its determining modes. Several examples are investigated, including some where the noise does not act on every determining mode directly. |
doi_str_mv | 10.1007/s004400200216 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661269004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>692074321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-af84104ab92a54152ec6cd4d0f5f1e83482dadbe339032ba1d12bef4bcfb2fdd3</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMoOKePvhfFx-rNTZq2jzLnBwz0QZ9LmiZbR9fUJIXtvzdjA_FBuHDh8jvnHg4h1xTuKUD-4AE4B8A4VJyQCeUMUwTBT8kEaF6kBWT0nFx4v4bIMI4TsphvB9vrPrSySzbttu2XyeDsoF1otU-sSXywaiV9aFXy8TT3SVg5Oy5XifS7zRDs_q7sOHRReUnOjOy8vjruKfl6nn_OXtPF-8vb7HGRKpaVIZWm4BS4rEuUGacZaiVUwxswmaG6YLzARja1ZqwEhrWkDcVaG14rU6NpGjYltwffmPR71D5Uazu6Pr6sUAiKooxNROrmX4oxFJijiFB6gJSz3jttqsG1G-l2FYVq32r1p9XI3x1NpVeyM072qvW_okjmJafsB1QOdws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>233262726</pqid></control><display><type>article</type><title>Exponential mixing properties of stochastic PDEs through asymptotic coupling</title><source>SpringerLink Journals - AutoHoldings</source><source>EBSCOhost Business Source Complete</source><creator>HAIRER, M</creator><creatorcontrib>HAIRER, M</creatorcontrib><description>We consider parabolic stochastic partial differential equations driven by white noise in time. We prove exponential convergence of the transition probabilities towards a unique invariant measure under suitable conditions. These conditions amount essentially to the fact that the equation transmits the noise to all its determining modes. Several examples are investigated, including some where the noise does not act on every determining mode directly.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s004400200216</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Exact sciences and technology ; Mathematical analysis ; Mathematics ; Noise ; Partial differential equations ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Stochastic analysis ; Transition probabilities ; White noise</subject><ispartof>Probability theory and related fields, 2002-11, Vol.124 (3), p.345-368</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright Springer-Verlag New York, Inc. Nov 2002</rights><rights>Springer-Verlag Berlin Heidelberg 2002.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-af84104ab92a54152ec6cd4d0f5f1e83482dadbe339032ba1d12bef4bcfb2fdd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14007941$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HAIRER, M</creatorcontrib><title>Exponential mixing properties of stochastic PDEs through asymptotic coupling</title><title>Probability theory and related fields</title><description>We consider parabolic stochastic partial differential equations driven by white noise in time. We prove exponential convergence of the transition probabilities towards a unique invariant measure under suitable conditions. These conditions amount essentially to the fact that the equation transmits the noise to all its determining modes. Several examples are investigated, including some where the noise does not act on every determining mode directly.</description><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Noise</subject><subject>Partial differential equations</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic analysis</subject><subject>Transition probabilities</subject><subject>White noise</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kN1LwzAUxYMoOKePvhfFx-rNTZq2jzLnBwz0QZ9LmiZbR9fUJIXtvzdjA_FBuHDh8jvnHg4h1xTuKUD-4AE4B8A4VJyQCeUMUwTBT8kEaF6kBWT0nFx4v4bIMI4TsphvB9vrPrSySzbttu2XyeDsoF1otU-sSXywaiV9aFXy8TT3SVg5Oy5XifS7zRDs_q7sOHRReUnOjOy8vjruKfl6nn_OXtPF-8vb7HGRKpaVIZWm4BS4rEuUGacZaiVUwxswmaG6YLzARja1ZqwEhrWkDcVaG14rU6NpGjYltwffmPR71D5Uazu6Pr6sUAiKooxNROrmX4oxFJijiFB6gJSz3jttqsG1G-l2FYVq32r1p9XI3x1NpVeyM072qvW_okjmJafsB1QOdws</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>HAIRER, M</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20021101</creationdate><title>Exponential mixing properties of stochastic PDEs through asymptotic coupling</title><author>HAIRER, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-af84104ab92a54152ec6cd4d0f5f1e83482dadbe339032ba1d12bef4bcfb2fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Noise</topic><topic>Partial differential equations</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic analysis</topic><topic>Transition probabilities</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HAIRER, M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HAIRER, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential mixing properties of stochastic PDEs through asymptotic coupling</atitle><jtitle>Probability theory and related fields</jtitle><date>2002-11-01</date><risdate>2002</risdate><volume>124</volume><issue>3</issue><spage>345</spage><epage>368</epage><pages>345-368</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>We consider parabolic stochastic partial differential equations driven by white noise in time. We prove exponential convergence of the transition probabilities towards a unique invariant measure under suitable conditions. These conditions amount essentially to the fact that the equation transmits the noise to all its determining modes. Several examples are investigated, including some where the noise does not act on every determining mode directly.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s004400200216</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-8051 |
ispartof | Probability theory and related fields, 2002-11, Vol.124 (3), p.345-368 |
issn | 0178-8051 1432-2064 |
language | eng |
recordid | cdi_proquest_journals_2661269004 |
source | SpringerLink Journals - AutoHoldings; EBSCOhost Business Source Complete |
subjects | Exact sciences and technology Mathematical analysis Mathematics Noise Partial differential equations Probability Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Stochastic analysis Transition probabilities White noise |
title | Exponential mixing properties of stochastic PDEs through asymptotic coupling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20mixing%20properties%20of%20stochastic%20PDEs%20through%20asymptotic%20coupling&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=HAIRER,%20M&rft.date=2002-11-01&rft.volume=124&rft.issue=3&rft.spage=345&rft.epage=368&rft.pages=345-368&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s004400200216&rft_dat=%3Cproquest_cross%3E692074321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=233262726&rft_id=info:pmid/&rfr_iscdi=true |