Lifschitz tail in a magnetic field : coexistence of classical and quantum behavior in the borderline case
We establish the exact low-energy asymptotics of the integrated density of states (Lifschitz tail) in a homogeneous magnetic field and Poissonian impurities with a repulsive single-site potential of Gaussian decay. It has been known that the Gaussian potential tail discriminates between the so-calle...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2001-10, Vol.121 (2), p.219-236 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | 2 |
container_start_page | 219 |
container_title | Probability theory and related fields |
container_volume | 121 |
creator | ERDOS, Laszlo |
description | We establish the exact low-energy asymptotics of the integrated density of states (Lifschitz tail) in a homogeneous magnetic field and Poissonian impurities with a repulsive single-site potential of Gaussian decay. It has been known that the Gaussian potential tail discriminates between the so-called “classical” and “quantum” regimes, and precise asymptotics are known in these cases. For the borderline case, the coexistence of the classical and quantum regimes was conjectured. Here we settle this last remaining open case to complete the full picture of the magnetic Lifschitz tails. |
doi_str_mv | 10.1007/PL00008803 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661265696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661265696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-af9e2ef7f5b26c5ea2b04d7415c267013d65bea27ee96504938c4326fea86e7a3</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWKsXP0FAvAirSXY32XqT4j9Y0IOel9nsxKZss22SFfXTm9JC5zIw_N4b3iPkkrNbzpi6e69Zmqpi-RGZ8CIXmWCyOCYTxlWVVazkp-QshGWCRF6ICbG1NUEvbPyjEWxPraNAV_DlMFpNjcW-o_dUD_hjQ0SnkQ6G6h5CsBp6Cq6jmxFcHFe0xQV828FvPeICaTv4Dn1vHVINAc_JiYE-4MV-T8nn0-PH_CWr355f5w91pnNZxAzMDAUaZcpWSF0iiJYVnSp4qYVUjOedLNt0VYgzWbJillc65ZQGoZKoIJ-Sq53v2g-bEUNslsPoXXrZCCm5kKWcyUTd7CjthxA8mmbt7Qr8b8NZs62yOVSZ4Ou9JYSU2nhw2oaDouCyVAn8B1uWctE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661265696</pqid></control><display><type>article</type><title>Lifschitz tail in a magnetic field : coexistence of classical and quantum behavior in the borderline case</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>ERDOS, Laszlo</creator><creatorcontrib>ERDOS, Laszlo</creatorcontrib><description>We establish the exact low-energy asymptotics of the integrated density of states (Lifschitz tail) in a homogeneous magnetic field and Poissonian impurities with a repulsive single-site potential of Gaussian decay. It has been known that the Gaussian potential tail discriminates between the so-called “classical” and “quantum” regimes, and precise asymptotics are known in these cases. For the borderline case, the coexistence of the classical and quantum regimes was conjectured. Here we settle this last remaining open case to complete the full picture of the magnetic Lifschitz tails.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/PL00008803</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Asymptotic properties ; Exact sciences and technology ; Fluctuation phenomena, random processes, noise, and brownian motion ; Magnetic fields ; Mathematics ; Physics ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><ispartof>Probability theory and related fields, 2001-10, Vol.121 (2), p.219-236</ispartof><rights>2002 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2001.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-af9e2ef7f5b26c5ea2b04d7415c267013d65bea27ee96504938c4326fea86e7a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14165780$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ERDOS, Laszlo</creatorcontrib><title>Lifschitz tail in a magnetic field : coexistence of classical and quantum behavior in the borderline case</title><title>Probability theory and related fields</title><description>We establish the exact low-energy asymptotics of the integrated density of states (Lifschitz tail) in a homogeneous magnetic field and Poissonian impurities with a repulsive single-site potential of Gaussian decay. It has been known that the Gaussian potential tail discriminates between the so-called “classical” and “quantum” regimes, and precise asymptotics are known in these cases. For the borderline case, the coexistence of the classical and quantum regimes was conjectured. Here we settle this last remaining open case to complete the full picture of the magnetic Lifschitz tails.</description><subject>Asymptotic properties</subject><subject>Exact sciences and technology</subject><subject>Fluctuation phenomena, random processes, noise, and brownian motion</subject><subject>Magnetic fields</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkE9LAzEQxYMoWKsXP0FAvAirSXY32XqT4j9Y0IOel9nsxKZss22SFfXTm9JC5zIw_N4b3iPkkrNbzpi6e69Zmqpi-RGZ8CIXmWCyOCYTxlWVVazkp-QshGWCRF6ICbG1NUEvbPyjEWxPraNAV_DlMFpNjcW-o_dUD_hjQ0SnkQ6G6h5CsBp6Cq6jmxFcHFe0xQV828FvPeICaTv4Dn1vHVINAc_JiYE-4MV-T8nn0-PH_CWr355f5w91pnNZxAzMDAUaZcpWSF0iiJYVnSp4qYVUjOedLNt0VYgzWbJillc65ZQGoZKoIJ-Sq53v2g-bEUNslsPoXXrZCCm5kKWcyUTd7CjthxA8mmbt7Qr8b8NZs62yOVSZ4Ou9JYSU2nhw2oaDouCyVAn8B1uWctE</recordid><startdate>20011001</startdate><enddate>20011001</enddate><creator>ERDOS, Laszlo</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20011001</creationdate><title>Lifschitz tail in a magnetic field : coexistence of classical and quantum behavior in the borderline case</title><author>ERDOS, Laszlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-af9e2ef7f5b26c5ea2b04d7415c267013d65bea27ee96504938c4326fea86e7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Asymptotic properties</topic><topic>Exact sciences and technology</topic><topic>Fluctuation phenomena, random processes, noise, and brownian motion</topic><topic>Magnetic fields</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ERDOS, Laszlo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ERDOS, Laszlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lifschitz tail in a magnetic field : coexistence of classical and quantum behavior in the borderline case</atitle><jtitle>Probability theory and related fields</jtitle><date>2001-10-01</date><risdate>2001</risdate><volume>121</volume><issue>2</issue><spage>219</spage><epage>236</epage><pages>219-236</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>We establish the exact low-energy asymptotics of the integrated density of states (Lifschitz tail) in a homogeneous magnetic field and Poissonian impurities with a repulsive single-site potential of Gaussian decay. It has been known that the Gaussian potential tail discriminates between the so-called “classical” and “quantum” regimes, and precise asymptotics are known in these cases. For the borderline case, the coexistence of the classical and quantum regimes was conjectured. Here we settle this last remaining open case to complete the full picture of the magnetic Lifschitz tails.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/PL00008803</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-8051 |
ispartof | Probability theory and related fields, 2001-10, Vol.121 (2), p.219-236 |
issn | 0178-8051 1432-2064 |
language | eng |
recordid | cdi_proquest_journals_2661265696 |
source | EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Asymptotic properties Exact sciences and technology Fluctuation phenomena, random processes, noise, and brownian motion Magnetic fields Mathematics Physics Probability Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) Statistical physics, thermodynamics, and nonlinear dynamical systems |
title | Lifschitz tail in a magnetic field : coexistence of classical and quantum behavior in the borderline case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lifschitz%20tail%20in%20a%20magnetic%20field%20:%20coexistence%20of%20classical%20and%20quantum%20behavior%20in%20the%20borderline%20case&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=ERDOS,%20Laszlo&rft.date=2001-10-01&rft.volume=121&rft.issue=2&rft.spage=219&rft.epage=236&rft.pages=219-236&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/PL00008803&rft_dat=%3Cproquest_cross%3E2661265696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661265696&rft_id=info:pmid/&rfr_iscdi=true |