High‐Performance Non‐Volatile Flash Photomemory via Highly Oriented Quasi‐2D Perovskite

Solution‐processable organic–inorganic hybrid perovskite materials have been applied to a variety of optoelectronic devices due to its long exciton lifetime and small binding energy. It has emerged as promising front‐runners for next‐generation non‐volatile flash photomemory devices. However, the ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-05, Vol.32 (19), p.n/a
Hauptverfasser: Chao, Ya‐Hui, Chen, Jian‐Cheng, Yang, Dong‐Lin, Tseng, You‐Jie, Hsu, Chao‐Hsien, Chen, Jung‐Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page
container_title Advanced functional materials
container_volume 32
creator Chao, Ya‐Hui
Chen, Jian‐Cheng
Yang, Dong‐Lin
Tseng, You‐Jie
Hsu, Chao‐Hsien
Chen, Jung‐Yao
description Solution‐processable organic–inorganic hybrid perovskite materials have been applied to a variety of optoelectronic devices due to its long exciton lifetime and small binding energy. It has emerged as promising front‐runners for next‐generation non‐volatile flash photomemory devices. However, the effect of crystal orientation of perovskite on the performance of photomemory still has not fully developed. Herein, non‐volatile flash photomemory with quasi‐2D perovskite/polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) as photoactive floating‐gate and p‐type semiconductor poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) as the chare‐transporting layer is successfully demonstrated. By adding phenylethylammonium bromide (PEABr) in formamidinium lead bromide perovskite (FAPbBr3), the crystal orientation of quasi‐2D perovskite is highly improved, which results in raised charge transfer efficiency from 76% to 90% compared to the pure FAPbBr3. Furthermore, ON/OFF current ratio of 104, low photo‐programming time of 5 ms under light intensity of 0.85 mW cm−2, charge transfer rate of 0.063 ns−1, and data storage capacity of over 7 bits (128 levels) in one cell can be achieved. In addition, the correlation between photo‐responsive current and photoluminescence (PL) is first examined by in operando PL measurement, which provides a new platform to explore the charge transfer process in photomemory. Non‐volatile flash photomemory with quasi‐2D perovskite/polystyrene‐block poly(ethylene oxide) (PS‐b‐PEO) as photoactive floating‐gate is successfully demonstrated. Through adding phenylethylammonium bromide (PEABr) in formamidinium lead bromide perovskite (FAPbBr3), the charge transfer efficiency is greatly raised from 76% to 90%. Furthermore, ON/OFF current ratio of 104, photo‐programming time of 5 ms, and data storage capacity of 7 bits can be achieved.
doi_str_mv 10.1002/adfm.202112521
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661254476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661254476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3171-bcb8dc6f162b007cac1dd156ababb5242df6a02bbd2beeab874d4f36c9ba88d23</originalsourceid><addsrcrecordid>eNqFkM1OwkAURidGExHdup7EdXHutEzLkoCICQomatyYyfxVii2DMwXTnY_gM_okDsHg0tW9ufnOd5OD0DmQDhBCL4XOqw4lFIB2KRygFjBgUUxodrjf4fkYnXi_IATSNE5a6GVcvM6_P79mxuXWVWKpDL6zy3B5sqWoi9LgUSn8HM_mtraVqaxr8KYQeMuVDZ66wixro_H9WvgiYHSIQ5fd-LeiNqfoKBelN2e_s40eR1cPg3E0mV7fDPqTSMWQQiSVzLRiOTAqCUmVUKA1dJmQQsouTajOmSBUSk2lMUJmaaKTPGaqJ0WWaRq30cWud-Xs-9r4mi_s2i3DS04ZCz6SJGUh1dmllLPeO5PzlSsq4RoOhG8V8q1CvlcYgN4O-Agemn_SvD8c3f6xP8UGecM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661254476</pqid></control><display><type>article</type><title>High‐Performance Non‐Volatile Flash Photomemory via Highly Oriented Quasi‐2D Perovskite</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chao, Ya‐Hui ; Chen, Jian‐Cheng ; Yang, Dong‐Lin ; Tseng, You‐Jie ; Hsu, Chao‐Hsien ; Chen, Jung‐Yao</creator><creatorcontrib>Chao, Ya‐Hui ; Chen, Jian‐Cheng ; Yang, Dong‐Lin ; Tseng, You‐Jie ; Hsu, Chao‐Hsien ; Chen, Jung‐Yao</creatorcontrib><description>Solution‐processable organic–inorganic hybrid perovskite materials have been applied to a variety of optoelectronic devices due to its long exciton lifetime and small binding energy. It has emerged as promising front‐runners for next‐generation non‐volatile flash photomemory devices. However, the effect of crystal orientation of perovskite on the performance of photomemory still has not fully developed. Herein, non‐volatile flash photomemory with quasi‐2D perovskite/polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) as photoactive floating‐gate and p‐type semiconductor poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) as the chare‐transporting layer is successfully demonstrated. By adding phenylethylammonium bromide (PEABr) in formamidinium lead bromide perovskite (FAPbBr3), the crystal orientation of quasi‐2D perovskite is highly improved, which results in raised charge transfer efficiency from 76% to 90% compared to the pure FAPbBr3. Furthermore, ON/OFF current ratio of 104, low photo‐programming time of 5 ms under light intensity of 0.85 mW cm−2, charge transfer rate of 0.063 ns−1, and data storage capacity of over 7 bits (128 levels) in one cell can be achieved. In addition, the correlation between photo‐responsive current and photoluminescence (PL) is first examined by in operando PL measurement, which provides a new platform to explore the charge transfer process in photomemory. Non‐volatile flash photomemory with quasi‐2D perovskite/polystyrene‐block poly(ethylene oxide) (PS‐b‐PEO) as photoactive floating‐gate is successfully demonstrated. Through adding phenylethylammonium bromide (PEABr) in formamidinium lead bromide perovskite (FAPbBr3), the charge transfer efficiency is greatly raised from 76% to 90%. Furthermore, ON/OFF current ratio of 104, photo‐programming time of 5 ms, and data storage capacity of 7 bits can be achieved.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202112521</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>block copolymers ; Charge efficiency ; Charge transfer ; Crystal structure ; Data storage ; Ethylene oxide ; Excitons ; floating‐gate photomemory ; in operando photoluminescence ; Luminous intensity ; Materials science ; multi‐level memory ; Optoelectronic devices ; Orientation effects ; Perovskites ; Photoluminescence ; Polyethylene oxide ; Polystyrene resins ; quasi‐2D perovskites ; Storage capacity</subject><ispartof>Advanced functional materials, 2022-05, Vol.32 (19), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3171-bcb8dc6f162b007cac1dd156ababb5242df6a02bbd2beeab874d4f36c9ba88d23</citedby><cites>FETCH-LOGICAL-c3171-bcb8dc6f162b007cac1dd156ababb5242df6a02bbd2beeab874d4f36c9ba88d23</cites><orcidid>0000-0002-5746-2885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202112521$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202112521$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chao, Ya‐Hui</creatorcontrib><creatorcontrib>Chen, Jian‐Cheng</creatorcontrib><creatorcontrib>Yang, Dong‐Lin</creatorcontrib><creatorcontrib>Tseng, You‐Jie</creatorcontrib><creatorcontrib>Hsu, Chao‐Hsien</creatorcontrib><creatorcontrib>Chen, Jung‐Yao</creatorcontrib><title>High‐Performance Non‐Volatile Flash Photomemory via Highly Oriented Quasi‐2D Perovskite</title><title>Advanced functional materials</title><description>Solution‐processable organic–inorganic hybrid perovskite materials have been applied to a variety of optoelectronic devices due to its long exciton lifetime and small binding energy. It has emerged as promising front‐runners for next‐generation non‐volatile flash photomemory devices. However, the effect of crystal orientation of perovskite on the performance of photomemory still has not fully developed. Herein, non‐volatile flash photomemory with quasi‐2D perovskite/polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) as photoactive floating‐gate and p‐type semiconductor poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) as the chare‐transporting layer is successfully demonstrated. By adding phenylethylammonium bromide (PEABr) in formamidinium lead bromide perovskite (FAPbBr3), the crystal orientation of quasi‐2D perovskite is highly improved, which results in raised charge transfer efficiency from 76% to 90% compared to the pure FAPbBr3. Furthermore, ON/OFF current ratio of 104, low photo‐programming time of 5 ms under light intensity of 0.85 mW cm−2, charge transfer rate of 0.063 ns−1, and data storage capacity of over 7 bits (128 levels) in one cell can be achieved. In addition, the correlation between photo‐responsive current and photoluminescence (PL) is first examined by in operando PL measurement, which provides a new platform to explore the charge transfer process in photomemory. Non‐volatile flash photomemory with quasi‐2D perovskite/polystyrene‐block poly(ethylene oxide) (PS‐b‐PEO) as photoactive floating‐gate is successfully demonstrated. Through adding phenylethylammonium bromide (PEABr) in formamidinium lead bromide perovskite (FAPbBr3), the charge transfer efficiency is greatly raised from 76% to 90%. Furthermore, ON/OFF current ratio of 104, photo‐programming time of 5 ms, and data storage capacity of 7 bits can be achieved.</description><subject>block copolymers</subject><subject>Charge efficiency</subject><subject>Charge transfer</subject><subject>Crystal structure</subject><subject>Data storage</subject><subject>Ethylene oxide</subject><subject>Excitons</subject><subject>floating‐gate photomemory</subject><subject>in operando photoluminescence</subject><subject>Luminous intensity</subject><subject>Materials science</subject><subject>multi‐level memory</subject><subject>Optoelectronic devices</subject><subject>Orientation effects</subject><subject>Perovskites</subject><subject>Photoluminescence</subject><subject>Polyethylene oxide</subject><subject>Polystyrene resins</subject><subject>quasi‐2D perovskites</subject><subject>Storage capacity</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwkAURidGExHdup7EdXHutEzLkoCICQomatyYyfxVii2DMwXTnY_gM_okDsHg0tW9ufnOd5OD0DmQDhBCL4XOqw4lFIB2KRygFjBgUUxodrjf4fkYnXi_IATSNE5a6GVcvM6_P79mxuXWVWKpDL6zy3B5sqWoi9LgUSn8HM_mtraVqaxr8KYQeMuVDZ66wixro_H9WvgiYHSIQ5fd-LeiNqfoKBelN2e_s40eR1cPg3E0mV7fDPqTSMWQQiSVzLRiOTAqCUmVUKA1dJmQQsouTajOmSBUSk2lMUJmaaKTPGaqJ0WWaRq30cWud-Xs-9r4mi_s2i3DS04ZCz6SJGUh1dmllLPeO5PzlSsq4RoOhG8V8q1CvlcYgN4O-Agemn_SvD8c3f6xP8UGecM</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Chao, Ya‐Hui</creator><creator>Chen, Jian‐Cheng</creator><creator>Yang, Dong‐Lin</creator><creator>Tseng, You‐Jie</creator><creator>Hsu, Chao‐Hsien</creator><creator>Chen, Jung‐Yao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5746-2885</orcidid></search><sort><creationdate>20220501</creationdate><title>High‐Performance Non‐Volatile Flash Photomemory via Highly Oriented Quasi‐2D Perovskite</title><author>Chao, Ya‐Hui ; Chen, Jian‐Cheng ; Yang, Dong‐Lin ; Tseng, You‐Jie ; Hsu, Chao‐Hsien ; Chen, Jung‐Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3171-bcb8dc6f162b007cac1dd156ababb5242df6a02bbd2beeab874d4f36c9ba88d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>block copolymers</topic><topic>Charge efficiency</topic><topic>Charge transfer</topic><topic>Crystal structure</topic><topic>Data storage</topic><topic>Ethylene oxide</topic><topic>Excitons</topic><topic>floating‐gate photomemory</topic><topic>in operando photoluminescence</topic><topic>Luminous intensity</topic><topic>Materials science</topic><topic>multi‐level memory</topic><topic>Optoelectronic devices</topic><topic>Orientation effects</topic><topic>Perovskites</topic><topic>Photoluminescence</topic><topic>Polyethylene oxide</topic><topic>Polystyrene resins</topic><topic>quasi‐2D perovskites</topic><topic>Storage capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chao, Ya‐Hui</creatorcontrib><creatorcontrib>Chen, Jian‐Cheng</creatorcontrib><creatorcontrib>Yang, Dong‐Lin</creatorcontrib><creatorcontrib>Tseng, You‐Jie</creatorcontrib><creatorcontrib>Hsu, Chao‐Hsien</creatorcontrib><creatorcontrib>Chen, Jung‐Yao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chao, Ya‐Hui</au><au>Chen, Jian‐Cheng</au><au>Yang, Dong‐Lin</au><au>Tseng, You‐Jie</au><au>Hsu, Chao‐Hsien</au><au>Chen, Jung‐Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Performance Non‐Volatile Flash Photomemory via Highly Oriented Quasi‐2D Perovskite</atitle><jtitle>Advanced functional materials</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>32</volume><issue>19</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Solution‐processable organic–inorganic hybrid perovskite materials have been applied to a variety of optoelectronic devices due to its long exciton lifetime and small binding energy. It has emerged as promising front‐runners for next‐generation non‐volatile flash photomemory devices. However, the effect of crystal orientation of perovskite on the performance of photomemory still has not fully developed. Herein, non‐volatile flash photomemory with quasi‐2D perovskite/polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) as photoactive floating‐gate and p‐type semiconductor poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) as the chare‐transporting layer is successfully demonstrated. By adding phenylethylammonium bromide (PEABr) in formamidinium lead bromide perovskite (FAPbBr3), the crystal orientation of quasi‐2D perovskite is highly improved, which results in raised charge transfer efficiency from 76% to 90% compared to the pure FAPbBr3. Furthermore, ON/OFF current ratio of 104, low photo‐programming time of 5 ms under light intensity of 0.85 mW cm−2, charge transfer rate of 0.063 ns−1, and data storage capacity of over 7 bits (128 levels) in one cell can be achieved. In addition, the correlation between photo‐responsive current and photoluminescence (PL) is first examined by in operando PL measurement, which provides a new platform to explore the charge transfer process in photomemory. Non‐volatile flash photomemory with quasi‐2D perovskite/polystyrene‐block poly(ethylene oxide) (PS‐b‐PEO) as photoactive floating‐gate is successfully demonstrated. Through adding phenylethylammonium bromide (PEABr) in formamidinium lead bromide perovskite (FAPbBr3), the charge transfer efficiency is greatly raised from 76% to 90%. Furthermore, ON/OFF current ratio of 104, photo‐programming time of 5 ms, and data storage capacity of 7 bits can be achieved.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202112521</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5746-2885</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-05, Vol.32 (19), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2661254476
source Wiley Online Library Journals Frontfile Complete
subjects block copolymers
Charge efficiency
Charge transfer
Crystal structure
Data storage
Ethylene oxide
Excitons
floating‐gate photomemory
in operando photoluminescence
Luminous intensity
Materials science
multi‐level memory
Optoelectronic devices
Orientation effects
Perovskites
Photoluminescence
Polyethylene oxide
Polystyrene resins
quasi‐2D perovskites
Storage capacity
title High‐Performance Non‐Volatile Flash Photomemory via Highly Oriented Quasi‐2D Perovskite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Performance%20Non%E2%80%90Volatile%20Flash%20Photomemory%20via%20Highly%20Oriented%20Quasi%E2%80%902D%20Perovskite&rft.jtitle=Advanced%20functional%20materials&rft.au=Chao,%20Ya%E2%80%90Hui&rft.date=2022-05-01&rft.volume=32&rft.issue=19&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202112521&rft_dat=%3Cproquest_cross%3E2661254476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661254476&rft_id=info:pmid/&rfr_iscdi=true