Fault Diagnosis of Automobile Engine Based on Improved BP Neutral Network
With the continuous enrichment of automobile functions and the complexity of automobile structure, the difficulty of automobile fault diagnosis is constantly increasing. The study of fault diagnosis methods with high real-time performance, accuracy, and predictability is of great significance to imp...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2022-04, Vol.2022, p.1-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2022 |
creator | Ling, Yanjun Niu, Chuanming |
description | With the continuous enrichment of automobile functions and the complexity of automobile structure, the difficulty of automobile fault diagnosis is constantly increasing. The study of fault diagnosis methods with high real-time performance, accuracy, and predictability is of great significance to improve automobile safety performance and ensure driving safety. Since the convergence speed of the traditional BP neural network algorithm is slow and the accuracy is insufficient in the process of automobile engine fault diagnosis, this paper improves convergence speed of the algorithm by introducing the momentum term, and the weights and thresholds of the neural network are optimized by using GA selection, crossover, and genetic characteristics, to propose a genetic algorithm (GA) optimization BP neural network fault diagnosis method. The average absolute error of the traditional BP neural network algorithm is 0.5976, while the average absolute error of the improved BP neural network algorithm in this paper is 0.1027. The comparative simulation results show that the proposed improved algorithm is better than the traditional BP neural network algorithm in diagnosis precision, accuracy, and other key indicators. |
doi_str_mv | 10.1155/2022/2287776 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660748616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660748616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-10e46e0939acf92a3a64cf5e20c11c1290d3e3885dc70d1b27298e42c79b41da3</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqWw8QGWGCH02U7seGxLC5UqYIDZchynuKRxsRMq_p5UrRiZ7h2O7ns6CF0TuCcky0YUKB1Rmgsh-AkakIxBknMhTv86l-foIsY1ADCgZIAWc93VLX5wetX46CL2FR53rd_4wtUWz5qVayye6GhL7Bu82GyD_-775BU_264Nuu6z3fnweYnOKl1He3XMIXqfz96mT8ny5XExHS8Tw5hoEwI25RYkk9pUkmqmeWqqzFIwhBhCJZTMsjzPSiOgJAUVVOY2pUbIIiWlZkN0c9jtP_nqbGzV2neh6U8qyjmINOeE99TdgTLBxxhspbbBbXT4UQTUXpbay1JHWT1-e8A_XFPqnfuf_gU4Y2dJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660748616</pqid></control><display><type>article</type><title>Fault Diagnosis of Automobile Engine Based on Improved BP Neutral Network</title><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><creator>Ling, Yanjun ; Niu, Chuanming</creator><contributor>Ning, Xin ; Xin Ning</contributor><creatorcontrib>Ling, Yanjun ; Niu, Chuanming ; Ning, Xin ; Xin Ning</creatorcontrib><description>With the continuous enrichment of automobile functions and the complexity of automobile structure, the difficulty of automobile fault diagnosis is constantly increasing. The study of fault diagnosis methods with high real-time performance, accuracy, and predictability is of great significance to improve automobile safety performance and ensure driving safety. Since the convergence speed of the traditional BP neural network algorithm is slow and the accuracy is insufficient in the process of automobile engine fault diagnosis, this paper improves convergence speed of the algorithm by introducing the momentum term, and the weights and thresholds of the neural network are optimized by using GA selection, crossover, and genetic characteristics, to propose a genetic algorithm (GA) optimization BP neural network fault diagnosis method. The average absolute error of the traditional BP neural network algorithm is 0.5976, while the average absolute error of the improved BP neural network algorithm in this paper is 0.1027. The comparative simulation results show that the proposed improved algorithm is better than the traditional BP neural network algorithm in diagnosis precision, accuracy, and other key indicators.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/2287776</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Accuracy ; Artificial intelligence ; Automobile engines ; Automotive engines ; Back propagation networks ; Continuity (mathematics) ; Convergence ; Fault diagnosis ; Fuzzy logic ; Genetic algorithms ; Industrialized nations ; Neural networks ; Optimization ; Vehicle safety ; Vehicles ; Wavelet transforms</subject><ispartof>Wireless communications and mobile computing, 2022-04, Vol.2022, p.1-11</ispartof><rights>Copyright © 2022 Yanjun Ling and Chuanming Niu.</rights><rights>Copyright © 2022 Yanjun Ling and Chuanming Niu. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-10e46e0939acf92a3a64cf5e20c11c1290d3e3885dc70d1b27298e42c79b41da3</citedby><cites>FETCH-LOGICAL-c337t-10e46e0939acf92a3a64cf5e20c11c1290d3e3885dc70d1b27298e42c79b41da3</cites><orcidid>0000-0001-8388-5673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Ning, Xin</contributor><contributor>Xin Ning</contributor><creatorcontrib>Ling, Yanjun</creatorcontrib><creatorcontrib>Niu, Chuanming</creatorcontrib><title>Fault Diagnosis of Automobile Engine Based on Improved BP Neutral Network</title><title>Wireless communications and mobile computing</title><description>With the continuous enrichment of automobile functions and the complexity of automobile structure, the difficulty of automobile fault diagnosis is constantly increasing. The study of fault diagnosis methods with high real-time performance, accuracy, and predictability is of great significance to improve automobile safety performance and ensure driving safety. Since the convergence speed of the traditional BP neural network algorithm is slow and the accuracy is insufficient in the process of automobile engine fault diagnosis, this paper improves convergence speed of the algorithm by introducing the momentum term, and the weights and thresholds of the neural network are optimized by using GA selection, crossover, and genetic characteristics, to propose a genetic algorithm (GA) optimization BP neural network fault diagnosis method. The average absolute error of the traditional BP neural network algorithm is 0.5976, while the average absolute error of the improved BP neural network algorithm in this paper is 0.1027. The comparative simulation results show that the proposed improved algorithm is better than the traditional BP neural network algorithm in diagnosis precision, accuracy, and other key indicators.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Automobile engines</subject><subject>Automotive engines</subject><subject>Back propagation networks</subject><subject>Continuity (mathematics)</subject><subject>Convergence</subject><subject>Fault diagnosis</subject><subject>Fuzzy logic</subject><subject>Genetic algorithms</subject><subject>Industrialized nations</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Vehicle safety</subject><subject>Vehicles</subject><subject>Wavelet transforms</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kLFOwzAURS0EEqWw8QGWGCH02U7seGxLC5UqYIDZchynuKRxsRMq_p5UrRiZ7h2O7ns6CF0TuCcky0YUKB1Rmgsh-AkakIxBknMhTv86l-foIsY1ADCgZIAWc93VLX5wetX46CL2FR53rd_4wtUWz5qVayye6GhL7Bu82GyD_-775BU_264Nuu6z3fnweYnOKl1He3XMIXqfz96mT8ny5XExHS8Tw5hoEwI25RYkk9pUkmqmeWqqzFIwhBhCJZTMsjzPSiOgJAUVVOY2pUbIIiWlZkN0c9jtP_nqbGzV2neh6U8qyjmINOeE99TdgTLBxxhspbbBbXT4UQTUXpbay1JHWT1-e8A_XFPqnfuf_gU4Y2dJ</recordid><startdate>20220427</startdate><enddate>20220427</enddate><creator>Ling, Yanjun</creator><creator>Niu, Chuanming</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8388-5673</orcidid></search><sort><creationdate>20220427</creationdate><title>Fault Diagnosis of Automobile Engine Based on Improved BP Neutral Network</title><author>Ling, Yanjun ; Niu, Chuanming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-10e46e0939acf92a3a64cf5e20c11c1290d3e3885dc70d1b27298e42c79b41da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Automobile engines</topic><topic>Automotive engines</topic><topic>Back propagation networks</topic><topic>Continuity (mathematics)</topic><topic>Convergence</topic><topic>Fault diagnosis</topic><topic>Fuzzy logic</topic><topic>Genetic algorithms</topic><topic>Industrialized nations</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Vehicle safety</topic><topic>Vehicles</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Yanjun</creatorcontrib><creatorcontrib>Niu, Chuanming</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Yanjun</au><au>Niu, Chuanming</au><au>Ning, Xin</au><au>Xin Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Diagnosis of Automobile Engine Based on Improved BP Neutral Network</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-04-27</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>With the continuous enrichment of automobile functions and the complexity of automobile structure, the difficulty of automobile fault diagnosis is constantly increasing. The study of fault diagnosis methods with high real-time performance, accuracy, and predictability is of great significance to improve automobile safety performance and ensure driving safety. Since the convergence speed of the traditional BP neural network algorithm is slow and the accuracy is insufficient in the process of automobile engine fault diagnosis, this paper improves convergence speed of the algorithm by introducing the momentum term, and the weights and thresholds of the neural network are optimized by using GA selection, crossover, and genetic characteristics, to propose a genetic algorithm (GA) optimization BP neural network fault diagnosis method. The average absolute error of the traditional BP neural network algorithm is 0.5976, while the average absolute error of the improved BP neural network algorithm in this paper is 0.1027. The comparative simulation results show that the proposed improved algorithm is better than the traditional BP neural network algorithm in diagnosis precision, accuracy, and other key indicators.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/2287776</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8388-5673</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2022-04, Vol.2022, p.1-11 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2660748616 |
source | Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection; Wiley-Blackwell Open Access Titles(OpenAccess) |
subjects | Accuracy Artificial intelligence Automobile engines Automotive engines Back propagation networks Continuity (mathematics) Convergence Fault diagnosis Fuzzy logic Genetic algorithms Industrialized nations Neural networks Optimization Vehicle safety Vehicles Wavelet transforms |
title | Fault Diagnosis of Automobile Engine Based on Improved BP Neutral Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Diagnosis%20of%20Automobile%20Engine%20Based%20on%20Improved%20BP%20Neutral%20Network&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Ling,%20Yanjun&rft.date=2022-04-27&rft.volume=2022&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/2287776&rft_dat=%3Cproquest_cross%3E2660748616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660748616&rft_id=info:pmid/&rfr_iscdi=true |