Substation Equipment Spare Parts’ Inventory Prediction Model Based on Remaining Useful Life

A large variety of high-value substation relay protection equipment occupies a considerable amount of inventory space and capital in electric power companies. To improve this problem, this study proposes an inventory prediction model based on the remaining useful life (RUL) of equipment. The model a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022-04, Vol.2022, p.1-11
Hauptverfasser: Tang, Bing, Ma, Zhenguo, Zhang, Keqi, Cao, Danyi, Zhang, Jianyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A large variety of high-value substation relay protection equipment occupies a considerable amount of inventory space and capital in electric power companies. To improve this problem, this study proposes an inventory prediction model based on the remaining useful life (RUL) of equipment. The model acquires the RUL data of equipment by using the support vector regression (SVR) algorithm, and then, by taking this data as the main factor and the environmental factors and human factors during the operation of equipment as secondary factors, the model can realize the prediction of relay protection equipment in the substation. At the same time, the nature of the enterprise and the requirements for safety inventory are considered. The comparison of calculation results and error analysis, as well as the calculation time, all indicate that the RUL-based inventory forecasting is the best one. This model not only has high prediction accuracy but also has strong stability and portability. The model can provide a strong decision basis for improving the inventory management of the enterprise, enhancing the resource allocation capability, and formulating the spare parts procurement plan under the condition that the spare parts inventory reaches the safety stock.
ISSN:1024-123X
1563-5147
DOI:10.1155/2022/3396850