Fault Tolerant Partition Resolvability in Convex Polytopes
Convex polytopes are special types of polytopes having an additional property that they are also convex sets in the n-dimensional Euclidean space. The convex polytope topologies are being used in the antitracking networks due to their stability, resilience, and destroy-resistance. The metric related...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2022, Vol.2022, p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2022 |
creator | Nadeem, Asim Kashif, Agha Bonyah, Ebenezer Zafar, Sohail |
description | Convex polytopes are special types of polytopes having an additional property that they are also convex sets in the n-dimensional Euclidean space. The convex polytope topologies are being used in the antitracking networks due to their stability, resilience, and destroy-resistance. The metric related parameters have been extensively studied in the recent times due to their applications in several areas including robot navigation, network designing, image processing, and chemistry. In this article, the sharp bounds for the fault tolerant partition dimension of certain well-known families of convex polytopes Rn, Qn, Sn, Tn, and Dn have been computed. Furthermore, we have studied the graphs having fault tolerant partition dimension bounded below by 4. |
doi_str_mv | 10.1155/2022/3238293 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660744536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660744536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2523-62b9f55ffd911f794999885e230e58ce16e8e4e6b3756460493a22593b54d6383</originalsourceid><addsrcrecordid>eNp90MFKAzEQgOEgCtbqzQdY8KirySSTTbxJsSoULFLBW8i2WUxZNzVJq317t7RnTzOHjxn4Cblk9JYxxDugAHccuALNj8iAoeQlMlEd9zsFUTLgH6fkLKUlpcCQqQG5H9t1m4tZaF20XS6mNmaffeiKN5dCu7G1b33eFr4rRqHbuN9iGtptDiuXzslJY9vkLg5zSN7Hj7PRczl5fXoZPUzKOSDwUkKtG8SmWWjGmkoLrbVS6IBTh2rumHTKCSdrXqEUkgrNLQBqXqNYSK74kFzt765i-F67lM0yrGPXvzQgJa2EQC57dbNX8xhSiq4xq-i_bNwaRs2ujtnVMYc6Pb_e80_fLeyP_1__AbrBYeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660744536</pqid></control><display><type>article</type><title>Fault Tolerant Partition Resolvability in Convex Polytopes</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Nadeem, Asim ; Kashif, Agha ; Bonyah, Ebenezer ; Zafar, Sohail</creator><contributor>Tan, Yong Aaron ; Yong Aaron Tan</contributor><creatorcontrib>Nadeem, Asim ; Kashif, Agha ; Bonyah, Ebenezer ; Zafar, Sohail ; Tan, Yong Aaron ; Yong Aaron Tan</creatorcontrib><description>Convex polytopes are special types of polytopes having an additional property that they are also convex sets in the n-dimensional Euclidean space. The convex polytope topologies are being used in the antitracking networks due to their stability, resilience, and destroy-resistance. The metric related parameters have been extensively studied in the recent times due to their applications in several areas including robot navigation, network designing, image processing, and chemistry. In this article, the sharp bounds for the fault tolerant partition dimension of certain well-known families of convex polytopes Rn, Qn, Sn, Tn, and Dn have been computed. Furthermore, we have studied the graphs having fault tolerant partition dimension bounded below by 4.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/3238293</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Computational geometry ; Convexity ; Euclidean geometry ; Fault tolerance ; Graphs ; Image processing ; Mathematical problems ; Partitions (mathematics) ; Polytopes ; Topology</subject><ispartof>Mathematical problems in engineering, 2022, Vol.2022, p.1-12</ispartof><rights>Copyright © 2022 Asim Nadeem et al.</rights><rights>Copyright © 2022 Asim Nadeem et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2523-62b9f55ffd911f794999885e230e58ce16e8e4e6b3756460493a22593b54d6383</citedby><cites>FETCH-LOGICAL-c2523-62b9f55ffd911f794999885e230e58ce16e8e4e6b3756460493a22593b54d6383</cites><orcidid>0000-0002-8177-7799 ; 0000-0002-1097-3450 ; 0000-0003-0808-4504 ; 0000-0002-0568-1592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><contributor>Tan, Yong Aaron</contributor><contributor>Yong Aaron Tan</contributor><creatorcontrib>Nadeem, Asim</creatorcontrib><creatorcontrib>Kashif, Agha</creatorcontrib><creatorcontrib>Bonyah, Ebenezer</creatorcontrib><creatorcontrib>Zafar, Sohail</creatorcontrib><title>Fault Tolerant Partition Resolvability in Convex Polytopes</title><title>Mathematical problems in engineering</title><description>Convex polytopes are special types of polytopes having an additional property that they are also convex sets in the n-dimensional Euclidean space. The convex polytope topologies are being used in the antitracking networks due to their stability, resilience, and destroy-resistance. The metric related parameters have been extensively studied in the recent times due to their applications in several areas including robot navigation, network designing, image processing, and chemistry. In this article, the sharp bounds for the fault tolerant partition dimension of certain well-known families of convex polytopes Rn, Qn, Sn, Tn, and Dn have been computed. Furthermore, we have studied the graphs having fault tolerant partition dimension bounded below by 4.</description><subject>Computational geometry</subject><subject>Convexity</subject><subject>Euclidean geometry</subject><subject>Fault tolerance</subject><subject>Graphs</subject><subject>Image processing</subject><subject>Mathematical problems</subject><subject>Partitions (mathematics)</subject><subject>Polytopes</subject><subject>Topology</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90MFKAzEQgOEgCtbqzQdY8KirySSTTbxJsSoULFLBW8i2WUxZNzVJq317t7RnTzOHjxn4Cblk9JYxxDugAHccuALNj8iAoeQlMlEd9zsFUTLgH6fkLKUlpcCQqQG5H9t1m4tZaF20XS6mNmaffeiKN5dCu7G1b33eFr4rRqHbuN9iGtptDiuXzslJY9vkLg5zSN7Hj7PRczl5fXoZPUzKOSDwUkKtG8SmWWjGmkoLrbVS6IBTh2rumHTKCSdrXqEUkgrNLQBqXqNYSK74kFzt765i-F67lM0yrGPXvzQgJa2EQC57dbNX8xhSiq4xq-i_bNwaRs2ujtnVMYc6Pb_e80_fLeyP_1__AbrBYeA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Nadeem, Asim</creator><creator>Kashif, Agha</creator><creator>Bonyah, Ebenezer</creator><creator>Zafar, Sohail</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8177-7799</orcidid><orcidid>https://orcid.org/0000-0002-1097-3450</orcidid><orcidid>https://orcid.org/0000-0003-0808-4504</orcidid><orcidid>https://orcid.org/0000-0002-0568-1592</orcidid></search><sort><creationdate>2022</creationdate><title>Fault Tolerant Partition Resolvability in Convex Polytopes</title><author>Nadeem, Asim ; Kashif, Agha ; Bonyah, Ebenezer ; Zafar, Sohail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2523-62b9f55ffd911f794999885e230e58ce16e8e4e6b3756460493a22593b54d6383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational geometry</topic><topic>Convexity</topic><topic>Euclidean geometry</topic><topic>Fault tolerance</topic><topic>Graphs</topic><topic>Image processing</topic><topic>Mathematical problems</topic><topic>Partitions (mathematics)</topic><topic>Polytopes</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadeem, Asim</creatorcontrib><creatorcontrib>Kashif, Agha</creatorcontrib><creatorcontrib>Bonyah, Ebenezer</creatorcontrib><creatorcontrib>Zafar, Sohail</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadeem, Asim</au><au>Kashif, Agha</au><au>Bonyah, Ebenezer</au><au>Zafar, Sohail</au><au>Tan, Yong Aaron</au><au>Yong Aaron Tan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Tolerant Partition Resolvability in Convex Polytopes</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Convex polytopes are special types of polytopes having an additional property that they are also convex sets in the n-dimensional Euclidean space. The convex polytope topologies are being used in the antitracking networks due to their stability, resilience, and destroy-resistance. The metric related parameters have been extensively studied in the recent times due to their applications in several areas including robot navigation, network designing, image processing, and chemistry. In this article, the sharp bounds for the fault tolerant partition dimension of certain well-known families of convex polytopes Rn, Qn, Sn, Tn, and Dn have been computed. Furthermore, we have studied the graphs having fault tolerant partition dimension bounded below by 4.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/3238293</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8177-7799</orcidid><orcidid>https://orcid.org/0000-0002-1097-3450</orcidid><orcidid>https://orcid.org/0000-0003-0808-4504</orcidid><orcidid>https://orcid.org/0000-0002-0568-1592</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2022, Vol.2022, p.1-12 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2660744536 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Computational geometry Convexity Euclidean geometry Fault tolerance Graphs Image processing Mathematical problems Partitions (mathematics) Polytopes Topology |
title | Fault Tolerant Partition Resolvability in Convex Polytopes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Tolerant%20Partition%20Resolvability%20in%20Convex%20Polytopes&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Nadeem,%20Asim&rft.date=2022&rft.volume=2022&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/3238293&rft_dat=%3Cproquest_cross%3E2660744536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660744536&rft_id=info:pmid/&rfr_iscdi=true |