Fault Tolerant Partition Resolvability in Convex Polytopes

Convex polytopes are special types of polytopes having an additional property that they are also convex sets in the n-dimensional Euclidean space. The convex polytope topologies are being used in the antitracking networks due to their stability, resilience, and destroy-resistance. The metric related...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022, Vol.2022, p.1-12
Hauptverfasser: Nadeem, Asim, Kashif, Agha, Bonyah, Ebenezer, Zafar, Sohail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2022
creator Nadeem, Asim
Kashif, Agha
Bonyah, Ebenezer
Zafar, Sohail
description Convex polytopes are special types of polytopes having an additional property that they are also convex sets in the n-dimensional Euclidean space. The convex polytope topologies are being used in the antitracking networks due to their stability, resilience, and destroy-resistance. The metric related parameters have been extensively studied in the recent times due to their applications in several areas including robot navigation, network designing, image processing, and chemistry. In this article, the sharp bounds for the fault tolerant partition dimension of certain well-known families of convex polytopes Rn, Qn, Sn, Tn, and Dn have been computed. Furthermore, we have studied the graphs having fault tolerant partition dimension bounded below by 4.
doi_str_mv 10.1155/2022/3238293
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660744536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660744536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2523-62b9f55ffd911f794999885e230e58ce16e8e4e6b3756460493a22593b54d6383</originalsourceid><addsrcrecordid>eNp90MFKAzEQgOEgCtbqzQdY8KirySSTTbxJsSoULFLBW8i2WUxZNzVJq317t7RnTzOHjxn4Cblk9JYxxDugAHccuALNj8iAoeQlMlEd9zsFUTLgH6fkLKUlpcCQqQG5H9t1m4tZaF20XS6mNmaffeiKN5dCu7G1b33eFr4rRqHbuN9iGtptDiuXzslJY9vkLg5zSN7Hj7PRczl5fXoZPUzKOSDwUkKtG8SmWWjGmkoLrbVS6IBTh2rumHTKCSdrXqEUkgrNLQBqXqNYSK74kFzt765i-F67lM0yrGPXvzQgJa2EQC57dbNX8xhSiq4xq-i_bNwaRs2ujtnVMYc6Pb_e80_fLeyP_1__AbrBYeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660744536</pqid></control><display><type>article</type><title>Fault Tolerant Partition Resolvability in Convex Polytopes</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Nadeem, Asim ; Kashif, Agha ; Bonyah, Ebenezer ; Zafar, Sohail</creator><contributor>Tan, Yong Aaron ; Yong Aaron Tan</contributor><creatorcontrib>Nadeem, Asim ; Kashif, Agha ; Bonyah, Ebenezer ; Zafar, Sohail ; Tan, Yong Aaron ; Yong Aaron Tan</creatorcontrib><description>Convex polytopes are special types of polytopes having an additional property that they are also convex sets in the n-dimensional Euclidean space. The convex polytope topologies are being used in the antitracking networks due to their stability, resilience, and destroy-resistance. The metric related parameters have been extensively studied in the recent times due to their applications in several areas including robot navigation, network designing, image processing, and chemistry. In this article, the sharp bounds for the fault tolerant partition dimension of certain well-known families of convex polytopes Rn, Qn, Sn, Tn, and Dn have been computed. Furthermore, we have studied the graphs having fault tolerant partition dimension bounded below by 4.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/3238293</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Computational geometry ; Convexity ; Euclidean geometry ; Fault tolerance ; Graphs ; Image processing ; Mathematical problems ; Partitions (mathematics) ; Polytopes ; Topology</subject><ispartof>Mathematical problems in engineering, 2022, Vol.2022, p.1-12</ispartof><rights>Copyright © 2022 Asim Nadeem et al.</rights><rights>Copyright © 2022 Asim Nadeem et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2523-62b9f55ffd911f794999885e230e58ce16e8e4e6b3756460493a22593b54d6383</citedby><cites>FETCH-LOGICAL-c2523-62b9f55ffd911f794999885e230e58ce16e8e4e6b3756460493a22593b54d6383</cites><orcidid>0000-0002-8177-7799 ; 0000-0002-1097-3450 ; 0000-0003-0808-4504 ; 0000-0002-0568-1592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><contributor>Tan, Yong Aaron</contributor><contributor>Yong Aaron Tan</contributor><creatorcontrib>Nadeem, Asim</creatorcontrib><creatorcontrib>Kashif, Agha</creatorcontrib><creatorcontrib>Bonyah, Ebenezer</creatorcontrib><creatorcontrib>Zafar, Sohail</creatorcontrib><title>Fault Tolerant Partition Resolvability in Convex Polytopes</title><title>Mathematical problems in engineering</title><description>Convex polytopes are special types of polytopes having an additional property that they are also convex sets in the n-dimensional Euclidean space. The convex polytope topologies are being used in the antitracking networks due to their stability, resilience, and destroy-resistance. The metric related parameters have been extensively studied in the recent times due to their applications in several areas including robot navigation, network designing, image processing, and chemistry. In this article, the sharp bounds for the fault tolerant partition dimension of certain well-known families of convex polytopes Rn, Qn, Sn, Tn, and Dn have been computed. Furthermore, we have studied the graphs having fault tolerant partition dimension bounded below by 4.</description><subject>Computational geometry</subject><subject>Convexity</subject><subject>Euclidean geometry</subject><subject>Fault tolerance</subject><subject>Graphs</subject><subject>Image processing</subject><subject>Mathematical problems</subject><subject>Partitions (mathematics)</subject><subject>Polytopes</subject><subject>Topology</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90MFKAzEQgOEgCtbqzQdY8KirySSTTbxJsSoULFLBW8i2WUxZNzVJq317t7RnTzOHjxn4Cblk9JYxxDugAHccuALNj8iAoeQlMlEd9zsFUTLgH6fkLKUlpcCQqQG5H9t1m4tZaF20XS6mNmaffeiKN5dCu7G1b33eFr4rRqHbuN9iGtptDiuXzslJY9vkLg5zSN7Hj7PRczl5fXoZPUzKOSDwUkKtG8SmWWjGmkoLrbVS6IBTh2rumHTKCSdrXqEUkgrNLQBqXqNYSK74kFzt765i-F67lM0yrGPXvzQgJa2EQC57dbNX8xhSiq4xq-i_bNwaRs2ujtnVMYc6Pb_e80_fLeyP_1__AbrBYeA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Nadeem, Asim</creator><creator>Kashif, Agha</creator><creator>Bonyah, Ebenezer</creator><creator>Zafar, Sohail</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8177-7799</orcidid><orcidid>https://orcid.org/0000-0002-1097-3450</orcidid><orcidid>https://orcid.org/0000-0003-0808-4504</orcidid><orcidid>https://orcid.org/0000-0002-0568-1592</orcidid></search><sort><creationdate>2022</creationdate><title>Fault Tolerant Partition Resolvability in Convex Polytopes</title><author>Nadeem, Asim ; Kashif, Agha ; Bonyah, Ebenezer ; Zafar, Sohail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2523-62b9f55ffd911f794999885e230e58ce16e8e4e6b3756460493a22593b54d6383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational geometry</topic><topic>Convexity</topic><topic>Euclidean geometry</topic><topic>Fault tolerance</topic><topic>Graphs</topic><topic>Image processing</topic><topic>Mathematical problems</topic><topic>Partitions (mathematics)</topic><topic>Polytopes</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadeem, Asim</creatorcontrib><creatorcontrib>Kashif, Agha</creatorcontrib><creatorcontrib>Bonyah, Ebenezer</creatorcontrib><creatorcontrib>Zafar, Sohail</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadeem, Asim</au><au>Kashif, Agha</au><au>Bonyah, Ebenezer</au><au>Zafar, Sohail</au><au>Tan, Yong Aaron</au><au>Yong Aaron Tan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Tolerant Partition Resolvability in Convex Polytopes</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Convex polytopes are special types of polytopes having an additional property that they are also convex sets in the n-dimensional Euclidean space. The convex polytope topologies are being used in the antitracking networks due to their stability, resilience, and destroy-resistance. The metric related parameters have been extensively studied in the recent times due to their applications in several areas including robot navigation, network designing, image processing, and chemistry. In this article, the sharp bounds for the fault tolerant partition dimension of certain well-known families of convex polytopes Rn, Qn, Sn, Tn, and Dn have been computed. Furthermore, we have studied the graphs having fault tolerant partition dimension bounded below by 4.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/3238293</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8177-7799</orcidid><orcidid>https://orcid.org/0000-0002-1097-3450</orcidid><orcidid>https://orcid.org/0000-0003-0808-4504</orcidid><orcidid>https://orcid.org/0000-0002-0568-1592</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2022, Vol.2022, p.1-12
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2660744536
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Computational geometry
Convexity
Euclidean geometry
Fault tolerance
Graphs
Image processing
Mathematical problems
Partitions (mathematics)
Polytopes
Topology
title Fault Tolerant Partition Resolvability in Convex Polytopes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Tolerant%20Partition%20Resolvability%20in%20Convex%20Polytopes&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Nadeem,%20Asim&rft.date=2022&rft.volume=2022&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/3238293&rft_dat=%3Cproquest_cross%3E2660744536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660744536&rft_id=info:pmid/&rfr_iscdi=true