Sulfur-deficient Bi2S3−x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction
Electrocatalytic nitrogen reduction reaction (NRR) is an appealing route for the sustainable NH 3 synthesis, while developing efficient and durable NRR catalysts remains at the heart of achieving high-efficiency N 2 -to-NH 3 electrocatalysis. Herein, we rationally combine vacancy and interface engin...
Gespeichert in:
Veröffentlicht in: | Nano research 2022-05, Vol.15 (5), p.3991-3999 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3999 |
---|---|
container_issue | 5 |
container_start_page | 3991 |
container_title | Nano research |
container_volume | 15 |
creator | Luo, Yaojing Shen, Peng Li, Xingchuan Guo, Yali Chu, Ke |
description | Electrocatalytic nitrogen reduction reaction (NRR) is an appealing route for the sustainable NH
3
synthesis, while developing efficient and durable NRR catalysts remains at the heart of achieving high-efficiency N
2
-to-NH
3
electrocatalysis. Herein, we rationally combine vacancy and interface engineering to design sulfur-deficient Bi
2
S
3
nanoparticles decorated Ti
3
C
2
T
x
-MXene as an effective NRR catalyst. The developed Bi
2
S
3
nanoparticles decorated Ti
3
C
2
T
x
-MXene (Bi
2
S
3−
x
/Ti
3
C
2
T
x
) naturally contained abundant S-vacancies and exhibited a dramatically boosted NRR activity with an NH
3
yield of 68.3 µg·h
−1
mg
−1
(−0.6 V) and a Faradaic efficiency of 22.5% (−0.4 V), far superior to pure Bi
2
S
3
and Ti
3
C
2
T
x
, and surpassing almost all ever reported Bi- and MXene-based NRR catalysts. Theoretical investigations unveiled that the exceptional NRR activity of Bi
2
S
3−
x
/Ti
3
C
2
T
x
stemmed from its dual-active-center system involving both S-vacancies and interfacial-Bi sites, which could synergistically promote N
2
adsorption and *N
2
H formation to result in an energetic-favorable NRR process. |
doi_str_mv | 10.1007/s12274-022-4097-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660493680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660493680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-3b2e76a1b3be201755b770b3f4b95f856a0afae9000e4d085e1b0bd59e329c0d3</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxhdRsFYfwNuC5-gk-zdHLf6DqodW8BaS7KSkrJua7IL7Bp59RJ_ElCqenMsMzPf7hvmS5JTCOQWoLgJlrMoJMEZy4BXhe8mEcl4TiLX_O1OWHyZHIawBSkbzepK0i6E1gycNGqstdn16Zdki-_r4fE_D2KFf2dBbLdt2TLUbNq3tVunSZjO2fCcPL9hhapxPlXNRFlfYou6907KX7RjB9JGlHptB99Z1x8mBkW3Ak58-TZ5vrpezOzJ_ur2fXc6JZnnZk0wxrEpJVaaQAa2KQlUVqMzkihemLkoJ0kjk8TPMG6gLpApUU3DMGNfQZNPkbOe78e5twNCLtRt8F08KVpaQ86ysIaroTqW9C8GjERtvX6UfBQWxDVXsQhUxVLENVfDIsB0TorZbof9z_h_6BhdLe5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660493680</pqid></control><display><type>article</type><title>Sulfur-deficient Bi2S3−x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Luo, Yaojing ; Shen, Peng ; Li, Xingchuan ; Guo, Yali ; Chu, Ke</creator><creatorcontrib>Luo, Yaojing ; Shen, Peng ; Li, Xingchuan ; Guo, Yali ; Chu, Ke</creatorcontrib><description>Electrocatalytic nitrogen reduction reaction (NRR) is an appealing route for the sustainable NH
3
synthesis, while developing efficient and durable NRR catalysts remains at the heart of achieving high-efficiency N
2
-to-NH
3
electrocatalysis. Herein, we rationally combine vacancy and interface engineering to design sulfur-deficient Bi
2
S
3
nanoparticles decorated Ti
3
C
2
T
x
-MXene as an effective NRR catalyst. The developed Bi
2
S
3
nanoparticles decorated Ti
3
C
2
T
x
-MXene (Bi
2
S
3−
x
/Ti
3
C
2
T
x
) naturally contained abundant S-vacancies and exhibited a dramatically boosted NRR activity with an NH
3
yield of 68.3 µg·h
−1
mg
−1
(−0.6 V) and a Faradaic efficiency of 22.5% (−0.4 V), far superior to pure Bi
2
S
3
and Ti
3
C
2
T
x
, and surpassing almost all ever reported Bi- and MXene-based NRR catalysts. Theoretical investigations unveiled that the exceptional NRR activity of Bi
2
S
3−
x
/Ti
3
C
2
T
x
stemmed from its dual-active-center system involving both S-vacancies and interfacial-Bi sites, which could synergistically promote N
2
adsorption and *N
2
H formation to result in an energetic-favorable NRR process.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-022-4097-9</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Ammonia ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Bismuth sulfides ; Catalysts ; Chemical reduction ; Chemistry and Materials Science ; Condensed Matter Physics ; Materials Science ; MXenes ; Nanoparticles ; Nanotechnology ; Research Article ; Sulfur ; Vacancies</subject><ispartof>Nano research, 2022-05, Vol.15 (5), p.3991-3999</ispartof><rights>Tsinghua University Press 2022</rights><rights>Tsinghua University Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-3b2e76a1b3be201755b770b3f4b95f856a0afae9000e4d085e1b0bd59e329c0d3</citedby><cites>FETCH-LOGICAL-c246t-3b2e76a1b3be201755b770b3f4b95f856a0afae9000e4d085e1b0bd59e329c0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-022-4097-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-022-4097-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Luo, Yaojing</creatorcontrib><creatorcontrib>Shen, Peng</creatorcontrib><creatorcontrib>Li, Xingchuan</creatorcontrib><creatorcontrib>Guo, Yali</creatorcontrib><creatorcontrib>Chu, Ke</creatorcontrib><title>Sulfur-deficient Bi2S3−x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Electrocatalytic nitrogen reduction reaction (NRR) is an appealing route for the sustainable NH
3
synthesis, while developing efficient and durable NRR catalysts remains at the heart of achieving high-efficiency N
2
-to-NH
3
electrocatalysis. Herein, we rationally combine vacancy and interface engineering to design sulfur-deficient Bi
2
S
3
nanoparticles decorated Ti
3
C
2
T
x
-MXene as an effective NRR catalyst. The developed Bi
2
S
3
nanoparticles decorated Ti
3
C
2
T
x
-MXene (Bi
2
S
3−
x
/Ti
3
C
2
T
x
) naturally contained abundant S-vacancies and exhibited a dramatically boosted NRR activity with an NH
3
yield of 68.3 µg·h
−1
mg
−1
(−0.6 V) and a Faradaic efficiency of 22.5% (−0.4 V), far superior to pure Bi
2
S
3
and Ti
3
C
2
T
x
, and surpassing almost all ever reported Bi- and MXene-based NRR catalysts. Theoretical investigations unveiled that the exceptional NRR activity of Bi
2
S
3−
x
/Ti
3
C
2
T
x
stemmed from its dual-active-center system involving both S-vacancies and interfacial-Bi sites, which could synergistically promote N
2
adsorption and *N
2
H formation to result in an energetic-favorable NRR process.</description><subject>Ammonia</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Bismuth sulfides</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Materials Science</subject><subject>MXenes</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Research Article</subject><subject>Sulfur</subject><subject>Vacancies</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM9KAzEQxhdRsFYfwNuC5-gk-zdHLf6DqodW8BaS7KSkrJua7IL7Bp59RJ_ElCqenMsMzPf7hvmS5JTCOQWoLgJlrMoJMEZy4BXhe8mEcl4TiLX_O1OWHyZHIawBSkbzepK0i6E1gycNGqstdn16Zdki-_r4fE_D2KFf2dBbLdt2TLUbNq3tVunSZjO2fCcPL9hhapxPlXNRFlfYou6907KX7RjB9JGlHptB99Z1x8mBkW3Ak58-TZ5vrpezOzJ_ur2fXc6JZnnZk0wxrEpJVaaQAa2KQlUVqMzkihemLkoJ0kjk8TPMG6gLpApUU3DMGNfQZNPkbOe78e5twNCLtRt8F08KVpaQ86ysIaroTqW9C8GjERtvX6UfBQWxDVXsQhUxVLENVfDIsB0TorZbof9z_h_6BhdLe5E</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Luo, Yaojing</creator><creator>Shen, Peng</creator><creator>Li, Xingchuan</creator><creator>Guo, Yali</creator><creator>Chu, Ke</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220501</creationdate><title>Sulfur-deficient Bi2S3−x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction</title><author>Luo, Yaojing ; Shen, Peng ; Li, Xingchuan ; Guo, Yali ; Chu, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-3b2e76a1b3be201755b770b3f4b95f856a0afae9000e4d085e1b0bd59e329c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonia</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Bismuth sulfides</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Materials Science</topic><topic>MXenes</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Research Article</topic><topic>Sulfur</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Yaojing</creatorcontrib><creatorcontrib>Shen, Peng</creatorcontrib><creatorcontrib>Li, Xingchuan</creatorcontrib><creatorcontrib>Guo, Yali</creatorcontrib><creatorcontrib>Chu, Ke</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Yaojing</au><au>Shen, Peng</au><au>Li, Xingchuan</au><au>Guo, Yali</au><au>Chu, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfur-deficient Bi2S3−x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>15</volume><issue>5</issue><spage>3991</spage><epage>3999</epage><pages>3991-3999</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Electrocatalytic nitrogen reduction reaction (NRR) is an appealing route for the sustainable NH
3
synthesis, while developing efficient and durable NRR catalysts remains at the heart of achieving high-efficiency N
2
-to-NH
3
electrocatalysis. Herein, we rationally combine vacancy and interface engineering to design sulfur-deficient Bi
2
S
3
nanoparticles decorated Ti
3
C
2
T
x
-MXene as an effective NRR catalyst. The developed Bi
2
S
3
nanoparticles decorated Ti
3
C
2
T
x
-MXene (Bi
2
S
3−
x
/Ti
3
C
2
T
x
) naturally contained abundant S-vacancies and exhibited a dramatically boosted NRR activity with an NH
3
yield of 68.3 µg·h
−1
mg
−1
(−0.6 V) and a Faradaic efficiency of 22.5% (−0.4 V), far superior to pure Bi
2
S
3
and Ti
3
C
2
T
x
, and surpassing almost all ever reported Bi- and MXene-based NRR catalysts. Theoretical investigations unveiled that the exceptional NRR activity of Bi
2
S
3−
x
/Ti
3
C
2
T
x
stemmed from its dual-active-center system involving both S-vacancies and interfacial-Bi sites, which could synergistically promote N
2
adsorption and *N
2
H formation to result in an energetic-favorable NRR process.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-022-4097-9</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2022-05, Vol.15 (5), p.3991-3999 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2660493680 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ammonia Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Bismuth sulfides Catalysts Chemical reduction Chemistry and Materials Science Condensed Matter Physics Materials Science MXenes Nanoparticles Nanotechnology Research Article Sulfur Vacancies |
title | Sulfur-deficient Bi2S3−x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfur-deficient%20Bi2S3%E2%88%92x%20synergistically%20coupling%20Ti3C2Tx-MXene%20for%20boosting%20electrocatalytic%20N2%20reduction&rft.jtitle=Nano%20research&rft.au=Luo,%20Yaojing&rft.date=2022-05-01&rft.volume=15&rft.issue=5&rft.spage=3991&rft.epage=3999&rft.pages=3991-3999&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-022-4097-9&rft_dat=%3Cproquest_cross%3E2660493680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660493680&rft_id=info:pmid/&rfr_iscdi=true |