Physical and photo-electrochemical properties of the spinel SrFe2O4: application to hydrogen production under visible light
SrFe 2 O 4 prepared by sol–gel method after annealing at 800 °C crystallizes in a normal spinel structure. The structural, morphological, magnetic, optical, transport, and photo-electrochemical properties were systematically investigated. The sol–gel permits to have nanocrystallites with an average...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2022-05, Vol.33 (13), p.9976-9987 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9987 |
---|---|
container_issue | 13 |
container_start_page | 9976 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 33 |
creator | Attia, S. Helaili, N. Rekhila, G. Bessekhouad, Y. Trari, M. |
description | SrFe
2
O
4
prepared by sol–gel method after annealing at 800 °C crystallizes in a normal spinel structure. The structural, morphological, magnetic, optical, transport, and photo-electrochemical properties were systematically investigated. The sol–gel permits to have nanocrystallites with an average size of ~ 30 nm. The UV–Visible diffuse reflectance analysis gives a direct transition of 1.80 eV, resulting from the Fe
3+
:
3d
orbital splitting in octahedral site. Such degeneracy lifting into (t
2g
–e
g
) levels is properly matched to the sun spectrum. The capacitance–potential (C
−2
−
E
) characteristic of SrFe
2
O
4
plotted in basic electrolyte (KOH 0.1 M) exhibits
p
-type comportment with a flat band potential of (
E
fb
) of 0.01 V
SCE
, a holes density (
N
A
) of 1.4 × 10
15
cm
−3
, and an extended space charge region of 0.9 µm. The electrochemical impedance spectroscopy exhibits a semicircle characteristic of the charge transfer whose diameter decreases under irradiation, thus supporting the semiconducting character of SrFe
2
O
4
. The electrons in the conduction band (− 1.70 V) have a high reducing ability and cathodically positioned with respect to the H
2
O/H
2
level, thus producing H
2
evolution under visible light illumination with a concomitant oxidation of SO
3
2−
/S
2
O
6
2−
. The best activity occurs at pH ~ 11 with H
2
evolution rate of 35 μmol mn
−1
g
−1
and a quantum yield of 1.8% under visible light (29 mW cm
−2
). |
doi_str_mv | 10.1007/s10854-022-07989-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660493549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660493549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5ba41c8049a98a16c9c5a492ddba1048564f396890de863bdc90f0b88aa94a733</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tU28yeIXLKyggreQpuk2S7epSSos_nm7W8Gbh2Fg5n3fGR4ALgm-JhgXN5FgkXGEKUW4kEIicgRmJCsY4oJ-HIMZllmBeEbpKTiLcYMxzjkTM_D90uyiM7qFuqtg3_jkkW2tScGbxm4Pmz743obkbIS-hqmxMPausy18DQ-Wrvgt1H3fjtLkfAeTh82uCn5tu72zGsxhPHSVDfDLRVe2FrZu3aRzcFLrNtqL3z4H7w_3b4sntFw9Pi_ulsgwIhPKSs2JEZhLLYUmuZEm01zSqio1wVxkOa-ZzIXElRU5KysjcY1LIbSWXBeMzcHVlDu-8znYmNTGD6EbTyqa52Muy8aaAzqpTPAxBlurPritDjtFsNpDVhNkNUJWB8iKjCY2meIo7tY2_EX_4_oB2QeBgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660493549</pqid></control><display><type>article</type><title>Physical and photo-electrochemical properties of the spinel SrFe2O4: application to hydrogen production under visible light</title><source>Springer Nature - Complete Springer Journals</source><creator>Attia, S. ; Helaili, N. ; Rekhila, G. ; Bessekhouad, Y. ; Trari, M.</creator><creatorcontrib>Attia, S. ; Helaili, N. ; Rekhila, G. ; Bessekhouad, Y. ; Trari, M.</creatorcontrib><description>SrFe
2
O
4
prepared by sol–gel method after annealing at 800 °C crystallizes in a normal spinel structure. The structural, morphological, magnetic, optical, transport, and photo-electrochemical properties were systematically investigated. The sol–gel permits to have nanocrystallites with an average size of ~ 30 nm. The UV–Visible diffuse reflectance analysis gives a direct transition of 1.80 eV, resulting from the Fe
3+
:
3d
orbital splitting in octahedral site. Such degeneracy lifting into (t
2g
–e
g
) levels is properly matched to the sun spectrum. The capacitance–potential (C
−2
−
E
) characteristic of SrFe
2
O
4
plotted in basic electrolyte (KOH 0.1 M) exhibits
p
-type comportment with a flat band potential of (
E
fb
) of 0.01 V
SCE
, a holes density (
N
A
) of 1.4 × 10
15
cm
−3
, and an extended space charge region of 0.9 µm. The electrochemical impedance spectroscopy exhibits a semicircle characteristic of the charge transfer whose diameter decreases under irradiation, thus supporting the semiconducting character of SrFe
2
O
4
. The electrons in the conduction band (− 1.70 V) have a high reducing ability and cathodically positioned with respect to the H
2
O/H
2
level, thus producing H
2
evolution under visible light illumination with a concomitant oxidation of SO
3
2−
/S
2
O
6
2−
. The best activity occurs at pH ~ 11 with H
2
evolution rate of 35 μmol mn
−1
g
−1
and a quantum yield of 1.8% under visible light (29 mW cm
−2
).</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-022-07989-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Charge transfer ; Chemistry and Materials Science ; Conduction bands ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrolytes ; Hydrogen ; Hydrogen evolution ; Hydrogen production ; Light ; Magnetic properties ; Materials Science ; Morphology ; Optical and Electronic Materials ; Optical properties ; Oxidation ; Photocatalysis ; Sol-gel processes ; Space charge ; Spinel</subject><ispartof>Journal of materials science. Materials in electronics, 2022-05, Vol.33 (13), p.9976-9987</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5ba41c8049a98a16c9c5a492ddba1048564f396890de863bdc90f0b88aa94a733</citedby><cites>FETCH-LOGICAL-c319t-5ba41c8049a98a16c9c5a492ddba1048564f396890de863bdc90f0b88aa94a733</cites><orcidid>0000-0002-5988-7692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-022-07989-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-022-07989-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Attia, S.</creatorcontrib><creatorcontrib>Helaili, N.</creatorcontrib><creatorcontrib>Rekhila, G.</creatorcontrib><creatorcontrib>Bessekhouad, Y.</creatorcontrib><creatorcontrib>Trari, M.</creatorcontrib><title>Physical and photo-electrochemical properties of the spinel SrFe2O4: application to hydrogen production under visible light</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>SrFe
2
O
4
prepared by sol–gel method after annealing at 800 °C crystallizes in a normal spinel structure. The structural, morphological, magnetic, optical, transport, and photo-electrochemical properties were systematically investigated. The sol–gel permits to have nanocrystallites with an average size of ~ 30 nm. The UV–Visible diffuse reflectance analysis gives a direct transition of 1.80 eV, resulting from the Fe
3+
:
3d
orbital splitting in octahedral site. Such degeneracy lifting into (t
2g
–e
g
) levels is properly matched to the sun spectrum. The capacitance–potential (C
−2
−
E
) characteristic of SrFe
2
O
4
plotted in basic electrolyte (KOH 0.1 M) exhibits
p
-type comportment with a flat band potential of (
E
fb
) of 0.01 V
SCE
, a holes density (
N
A
) of 1.4 × 10
15
cm
−3
, and an extended space charge region of 0.9 µm. The electrochemical impedance spectroscopy exhibits a semicircle characteristic of the charge transfer whose diameter decreases under irradiation, thus supporting the semiconducting character of SrFe
2
O
4
. The electrons in the conduction band (− 1.70 V) have a high reducing ability and cathodically positioned with respect to the H
2
O/H
2
level, thus producing H
2
evolution under visible light illumination with a concomitant oxidation of SO
3
2−
/S
2
O
6
2−
. The best activity occurs at pH ~ 11 with H
2
evolution rate of 35 μmol mn
−1
g
−1
and a quantum yield of 1.8% under visible light (29 mW cm
−2
).</description><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Conduction bands</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrolytes</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Light</subject><subject>Magnetic properties</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Sol-gel processes</subject><subject>Space charge</subject><subject>Spinel</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tU28yeIXLKyggreQpuk2S7epSSos_nm7W8Gbh2Fg5n3fGR4ALgm-JhgXN5FgkXGEKUW4kEIicgRmJCsY4oJ-HIMZllmBeEbpKTiLcYMxzjkTM_D90uyiM7qFuqtg3_jkkW2tScGbxm4Pmz743obkbIS-hqmxMPausy18DQ-Wrvgt1H3fjtLkfAeTh82uCn5tu72zGsxhPHSVDfDLRVe2FrZu3aRzcFLrNtqL3z4H7w_3b4sntFw9Pi_ulsgwIhPKSs2JEZhLLYUmuZEm01zSqio1wVxkOa-ZzIXElRU5KysjcY1LIbSWXBeMzcHVlDu-8znYmNTGD6EbTyqa52Muy8aaAzqpTPAxBlurPritDjtFsNpDVhNkNUJWB8iKjCY2meIo7tY2_EX_4_oB2QeBgg</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Attia, S.</creator><creator>Helaili, N.</creator><creator>Rekhila, G.</creator><creator>Bessekhouad, Y.</creator><creator>Trari, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-5988-7692</orcidid></search><sort><creationdate>20220501</creationdate><title>Physical and photo-electrochemical properties of the spinel SrFe2O4: application to hydrogen production under visible light</title><author>Attia, S. ; Helaili, N. ; Rekhila, G. ; Bessekhouad, Y. ; Trari, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5ba41c8049a98a16c9c5a492ddba1048564f396890de863bdc90f0b88aa94a733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Conduction bands</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrolytes</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Light</topic><topic>Magnetic properties</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Sol-gel processes</topic><topic>Space charge</topic><topic>Spinel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attia, S.</creatorcontrib><creatorcontrib>Helaili, N.</creatorcontrib><creatorcontrib>Rekhila, G.</creatorcontrib><creatorcontrib>Bessekhouad, Y.</creatorcontrib><creatorcontrib>Trari, M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attia, S.</au><au>Helaili, N.</au><au>Rekhila, G.</au><au>Bessekhouad, Y.</au><au>Trari, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical and photo-electrochemical properties of the spinel SrFe2O4: application to hydrogen production under visible light</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>33</volume><issue>13</issue><spage>9976</spage><epage>9987</epage><pages>9976-9987</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>SrFe
2
O
4
prepared by sol–gel method after annealing at 800 °C crystallizes in a normal spinel structure. The structural, morphological, magnetic, optical, transport, and photo-electrochemical properties were systematically investigated. The sol–gel permits to have nanocrystallites with an average size of ~ 30 nm. The UV–Visible diffuse reflectance analysis gives a direct transition of 1.80 eV, resulting from the Fe
3+
:
3d
orbital splitting in octahedral site. Such degeneracy lifting into (t
2g
–e
g
) levels is properly matched to the sun spectrum. The capacitance–potential (C
−2
−
E
) characteristic of SrFe
2
O
4
plotted in basic electrolyte (KOH 0.1 M) exhibits
p
-type comportment with a flat band potential of (
E
fb
) of 0.01 V
SCE
, a holes density (
N
A
) of 1.4 × 10
15
cm
−3
, and an extended space charge region of 0.9 µm. The electrochemical impedance spectroscopy exhibits a semicircle characteristic of the charge transfer whose diameter decreases under irradiation, thus supporting the semiconducting character of SrFe
2
O
4
. The electrons in the conduction band (− 1.70 V) have a high reducing ability and cathodically positioned with respect to the H
2
O/H
2
level, thus producing H
2
evolution under visible light illumination with a concomitant oxidation of SO
3
2−
/S
2
O
6
2−
. The best activity occurs at pH ~ 11 with H
2
evolution rate of 35 μmol mn
−1
g
−1
and a quantum yield of 1.8% under visible light (29 mW cm
−2
).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-022-07989-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5988-7692</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2022-05, Vol.33 (13), p.9976-9987 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2660493549 |
source | Springer Nature - Complete Springer Journals |
subjects | Characterization and Evaluation of Materials Charge transfer Chemistry and Materials Science Conduction bands Electrochemical analysis Electrochemical impedance spectroscopy Electrolytes Hydrogen Hydrogen evolution Hydrogen production Light Magnetic properties Materials Science Morphology Optical and Electronic Materials Optical properties Oxidation Photocatalysis Sol-gel processes Space charge Spinel |
title | Physical and photo-electrochemical properties of the spinel SrFe2O4: application to hydrogen production under visible light |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20and%20photo-electrochemical%20properties%20of%20the%20spinel%20SrFe2O4:%20application%20to%20hydrogen%20production%20under%20visible%20light&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Attia,%20S.&rft.date=2022-05-01&rft.volume=33&rft.issue=13&rft.spage=9976&rft.epage=9987&rft.pages=9976-9987&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-022-07989-1&rft_dat=%3Cproquest_cross%3E2660493549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660493549&rft_id=info:pmid/&rfr_iscdi=true |