Obtaining more appropriate temperature sensor locations for thermal error modeling: reduction, classification, and selection

Obtaining appropriate temperature sensor locations is crucial for data-driven thermal error modeling. The pseudo-correlation and variable ranking will cause inappropriate sensor selection results. In this paper, a three-step sensor selection strategy based on the detrended cross-correlation coeffici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2022-06, Vol.120 (7-8), p.5175-5192
Hauptverfasser: Liao, Qihao, Wang, Ling, Yin, Ming, Xie, Luofeng, Yin, Guofu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5192
container_issue 7-8
container_start_page 5175
container_title International journal of advanced manufacturing technology
container_volume 120
creator Liao, Qihao
Wang, Ling
Yin, Ming
Xie, Luofeng
Yin, Guofu
description Obtaining appropriate temperature sensor locations is crucial for data-driven thermal error modeling. The pseudo-correlation and variable ranking will cause inappropriate sensor selection results. In this paper, a three-step sensor selection strategy based on the detrended cross-correlation coefficient is proposed to obtain a stable and robust set of thermal key points. Combined with sensor reduction and classification, 15 sensors are reduced to 9 and classified into 3 groups. Finally, three sensors are selected as thermal key points. The sensor selection results are applied to a support vector machine model for a CNC grinding machine. The modeling results of 49 predictions based on 7 speed spectrums show that the root mean square error and maximum error are less than 2.32 μm and 3.73 μm, respectively. Compared with two traditional methods, the proposed method has higher accuracy and stronger robustness, which is effective for sensor selection of thermal error modeling.
doi_str_mv 10.1007/s00170-022-09052-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660489139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660489139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-f7b547000b71f72eb800fd93762f4ff5dc9405d64933df4309a8f8e752a598a43</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgttGTy8wk7qR4g0I3ug6ZmaROmUtNMguLD2_aEdy5Cif5_j-cD6FrCrcUoLgLALQAAowRUJAxsj9BMyo4JxxodopmwHJJeJHLc3QRwjbhOc3lDH2vy2iavuk3uBu8xWa388PONyZaHG23s97EMd0H24fB43aoTGyGPmCXpvhhfWdabL1PUzfUtk1F99jbeqwO2AJXrQmhcc0UW2DT16mrtcfnS3TmTBvs1e85R-9Pj2_LF7JaP78uH1akYkJF4ooyEwUAlAV1BbOlBHC1StswJ5zL6koJyOpcKM5rJzgoI520RcZMpqQRfI5upt602-doQ9TbYfR9-lKzPAchFeUqUWyiKj-E4K3TyUNn_JemoA-W9WRZJ8v6aFnvU4hPoZDgfmP9X_U_qR91sILQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660489139</pqid></control><display><type>article</type><title>Obtaining more appropriate temperature sensor locations for thermal error modeling: reduction, classification, and selection</title><source>SpringerNature Journals</source><creator>Liao, Qihao ; Wang, Ling ; Yin, Ming ; Xie, Luofeng ; Yin, Guofu</creator><creatorcontrib>Liao, Qihao ; Wang, Ling ; Yin, Ming ; Xie, Luofeng ; Yin, Guofu</creatorcontrib><description>Obtaining appropriate temperature sensor locations is crucial for data-driven thermal error modeling. The pseudo-correlation and variable ranking will cause inappropriate sensor selection results. In this paper, a three-step sensor selection strategy based on the detrended cross-correlation coefficient is proposed to obtain a stable and robust set of thermal key points. Combined with sensor reduction and classification, 15 sensors are reduced to 9 and classified into 3 groups. Finally, three sensors are selected as thermal key points. The sensor selection results are applied to a support vector machine model for a CNC grinding machine. The modeling results of 49 predictions based on 7 speed spectrums show that the root mean square error and maximum error are less than 2.32 μm and 3.73 μm, respectively. Compared with two traditional methods, the proposed method has higher accuracy and stronger robustness, which is effective for sensor selection of thermal error modeling.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-09052-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Classification ; Computer-Aided Engineering (CAD ; Correlation coefficients ; Cross correlation ; Engineering ; Error reduction ; Grinding machines ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Modelling ; Original Article ; Sensors ; Support vector machines ; Temperature sensors</subject><ispartof>International journal of advanced manufacturing technology, 2022-06, Vol.120 (7-8), p.5175-5192</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-f7b547000b71f72eb800fd93762f4ff5dc9405d64933df4309a8f8e752a598a43</citedby><cites>FETCH-LOGICAL-c249t-f7b547000b71f72eb800fd93762f4ff5dc9405d64933df4309a8f8e752a598a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-022-09052-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-022-09052-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liao, Qihao</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Yin, Ming</creatorcontrib><creatorcontrib>Xie, Luofeng</creatorcontrib><creatorcontrib>Yin, Guofu</creatorcontrib><title>Obtaining more appropriate temperature sensor locations for thermal error modeling: reduction, classification, and selection</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Obtaining appropriate temperature sensor locations is crucial for data-driven thermal error modeling. The pseudo-correlation and variable ranking will cause inappropriate sensor selection results. In this paper, a three-step sensor selection strategy based on the detrended cross-correlation coefficient is proposed to obtain a stable and robust set of thermal key points. Combined with sensor reduction and classification, 15 sensors are reduced to 9 and classified into 3 groups. Finally, three sensors are selected as thermal key points. The sensor selection results are applied to a support vector machine model for a CNC grinding machine. The modeling results of 49 predictions based on 7 speed spectrums show that the root mean square error and maximum error are less than 2.32 μm and 3.73 μm, respectively. Compared with two traditional methods, the proposed method has higher accuracy and stronger robustness, which is effective for sensor selection of thermal error modeling.</description><subject>CAE) and Design</subject><subject>Classification</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Correlation coefficients</subject><subject>Cross correlation</subject><subject>Engineering</subject><subject>Error reduction</subject><subject>Grinding machines</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Modelling</subject><subject>Original Article</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>Temperature sensors</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4CrgttGTy8wk7qR4g0I3ug6ZmaROmUtNMguLD2_aEdy5Cif5_j-cD6FrCrcUoLgLALQAAowRUJAxsj9BMyo4JxxodopmwHJJeJHLc3QRwjbhOc3lDH2vy2iavuk3uBu8xWa388PONyZaHG23s97EMd0H24fB43aoTGyGPmCXpvhhfWdabL1PUzfUtk1F99jbeqwO2AJXrQmhcc0UW2DT16mrtcfnS3TmTBvs1e85R-9Pj2_LF7JaP78uH1akYkJF4ooyEwUAlAV1BbOlBHC1StswJ5zL6koJyOpcKM5rJzgoI520RcZMpqQRfI5upt602-doQ9TbYfR9-lKzPAchFeUqUWyiKj-E4K3TyUNn_JemoA-W9WRZJ8v6aFnvU4hPoZDgfmP9X_U_qR91sILQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Liao, Qihao</creator><creator>Wang, Ling</creator><creator>Yin, Ming</creator><creator>Xie, Luofeng</creator><creator>Yin, Guofu</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220601</creationdate><title>Obtaining more appropriate temperature sensor locations for thermal error modeling: reduction, classification, and selection</title><author>Liao, Qihao ; Wang, Ling ; Yin, Ming ; Xie, Luofeng ; Yin, Guofu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-f7b547000b71f72eb800fd93762f4ff5dc9405d64933df4309a8f8e752a598a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CAE) and Design</topic><topic>Classification</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Correlation coefficients</topic><topic>Cross correlation</topic><topic>Engineering</topic><topic>Error reduction</topic><topic>Grinding machines</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Modelling</topic><topic>Original Article</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Qihao</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Yin, Ming</creatorcontrib><creatorcontrib>Xie, Luofeng</creatorcontrib><creatorcontrib>Yin, Guofu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Qihao</au><au>Wang, Ling</au><au>Yin, Ming</au><au>Xie, Luofeng</au><au>Yin, Guofu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obtaining more appropriate temperature sensor locations for thermal error modeling: reduction, classification, and selection</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>120</volume><issue>7-8</issue><spage>5175</spage><epage>5192</epage><pages>5175-5192</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Obtaining appropriate temperature sensor locations is crucial for data-driven thermal error modeling. The pseudo-correlation and variable ranking will cause inappropriate sensor selection results. In this paper, a three-step sensor selection strategy based on the detrended cross-correlation coefficient is proposed to obtain a stable and robust set of thermal key points. Combined with sensor reduction and classification, 15 sensors are reduced to 9 and classified into 3 groups. Finally, three sensors are selected as thermal key points. The sensor selection results are applied to a support vector machine model for a CNC grinding machine. The modeling results of 49 predictions based on 7 speed spectrums show that the root mean square error and maximum error are less than 2.32 μm and 3.73 μm, respectively. Compared with two traditional methods, the proposed method has higher accuracy and stronger robustness, which is effective for sensor selection of thermal error modeling.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-09052-z</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2022-06, Vol.120 (7-8), p.5175-5192
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2660489139
source SpringerNature Journals
subjects CAE) and Design
Classification
Computer-Aided Engineering (CAD
Correlation coefficients
Cross correlation
Engineering
Error reduction
Grinding machines
Industrial and Production Engineering
Mechanical Engineering
Media Management
Modelling
Original Article
Sensors
Support vector machines
Temperature sensors
title Obtaining more appropriate temperature sensor locations for thermal error modeling: reduction, classification, and selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A07%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obtaining%20more%20appropriate%20temperature%20sensor%20locations%20for%20thermal%20error%20modeling:%20reduction,%20classification,%20and%20selection&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Liao,%20Qihao&rft.date=2022-06-01&rft.volume=120&rft.issue=7-8&rft.spage=5175&rft.epage=5192&rft.pages=5175-5192&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-09052-z&rft_dat=%3Cproquest_cross%3E2660489139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660489139&rft_id=info:pmid/&rfr_iscdi=true