Obtaining more appropriate temperature sensor locations for thermal error modeling: reduction, classification, and selection
Obtaining appropriate temperature sensor locations is crucial for data-driven thermal error modeling. The pseudo-correlation and variable ranking will cause inappropriate sensor selection results. In this paper, a three-step sensor selection strategy based on the detrended cross-correlation coeffici...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2022-06, Vol.120 (7-8), p.5175-5192 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5192 |
---|---|
container_issue | 7-8 |
container_start_page | 5175 |
container_title | International journal of advanced manufacturing technology |
container_volume | 120 |
creator | Liao, Qihao Wang, Ling Yin, Ming Xie, Luofeng Yin, Guofu |
description | Obtaining appropriate temperature sensor locations is crucial for data-driven thermal error modeling. The pseudo-correlation and variable ranking will cause inappropriate sensor selection results. In this paper, a three-step sensor selection strategy based on the detrended cross-correlation coefficient is proposed to obtain a stable and robust set of thermal key points. Combined with sensor reduction and classification, 15 sensors are reduced to 9 and classified into 3 groups. Finally, three sensors are selected as thermal key points. The sensor selection results are applied to a support vector machine model for a CNC grinding machine. The modeling results of 49 predictions based on 7 speed spectrums show that the root mean square error and maximum error are less than 2.32 μm and 3.73 μm, respectively. Compared with two traditional methods, the proposed method has higher accuracy and stronger robustness, which is effective for sensor selection of thermal error modeling. |
doi_str_mv | 10.1007/s00170-022-09052-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660489139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660489139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-f7b547000b71f72eb800fd93762f4ff5dc9405d64933df4309a8f8e752a598a43</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgttGTy8wk7qR4g0I3ug6ZmaROmUtNMguLD2_aEdy5Cif5_j-cD6FrCrcUoLgLALQAAowRUJAxsj9BMyo4JxxodopmwHJJeJHLc3QRwjbhOc3lDH2vy2iavuk3uBu8xWa388PONyZaHG23s97EMd0H24fB43aoTGyGPmCXpvhhfWdabL1PUzfUtk1F99jbeqwO2AJXrQmhcc0UW2DT16mrtcfnS3TmTBvs1e85R-9Pj2_LF7JaP78uH1akYkJF4ooyEwUAlAV1BbOlBHC1StswJ5zL6koJyOpcKM5rJzgoI520RcZMpqQRfI5upt602-doQ9TbYfR9-lKzPAchFeUqUWyiKj-E4K3TyUNn_JemoA-W9WRZJ8v6aFnvU4hPoZDgfmP9X_U_qR91sILQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660489139</pqid></control><display><type>article</type><title>Obtaining more appropriate temperature sensor locations for thermal error modeling: reduction, classification, and selection</title><source>SpringerNature Journals</source><creator>Liao, Qihao ; Wang, Ling ; Yin, Ming ; Xie, Luofeng ; Yin, Guofu</creator><creatorcontrib>Liao, Qihao ; Wang, Ling ; Yin, Ming ; Xie, Luofeng ; Yin, Guofu</creatorcontrib><description>Obtaining appropriate temperature sensor locations is crucial for data-driven thermal error modeling. The pseudo-correlation and variable ranking will cause inappropriate sensor selection results. In this paper, a three-step sensor selection strategy based on the detrended cross-correlation coefficient is proposed to obtain a stable and robust set of thermal key points. Combined with sensor reduction and classification, 15 sensors are reduced to 9 and classified into 3 groups. Finally, three sensors are selected as thermal key points. The sensor selection results are applied to a support vector machine model for a CNC grinding machine. The modeling results of 49 predictions based on 7 speed spectrums show that the root mean square error and maximum error are less than 2.32 μm and 3.73 μm, respectively. Compared with two traditional methods, the proposed method has higher accuracy and stronger robustness, which is effective for sensor selection of thermal error modeling.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-09052-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Classification ; Computer-Aided Engineering (CAD ; Correlation coefficients ; Cross correlation ; Engineering ; Error reduction ; Grinding machines ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Modelling ; Original Article ; Sensors ; Support vector machines ; Temperature sensors</subject><ispartof>International journal of advanced manufacturing technology, 2022-06, Vol.120 (7-8), p.5175-5192</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-f7b547000b71f72eb800fd93762f4ff5dc9405d64933df4309a8f8e752a598a43</citedby><cites>FETCH-LOGICAL-c249t-f7b547000b71f72eb800fd93762f4ff5dc9405d64933df4309a8f8e752a598a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-022-09052-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-022-09052-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liao, Qihao</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Yin, Ming</creatorcontrib><creatorcontrib>Xie, Luofeng</creatorcontrib><creatorcontrib>Yin, Guofu</creatorcontrib><title>Obtaining more appropriate temperature sensor locations for thermal error modeling: reduction, classification, and selection</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Obtaining appropriate temperature sensor locations is crucial for data-driven thermal error modeling. The pseudo-correlation and variable ranking will cause inappropriate sensor selection results. In this paper, a three-step sensor selection strategy based on the detrended cross-correlation coefficient is proposed to obtain a stable and robust set of thermal key points. Combined with sensor reduction and classification, 15 sensors are reduced to 9 and classified into 3 groups. Finally, three sensors are selected as thermal key points. The sensor selection results are applied to a support vector machine model for a CNC grinding machine. The modeling results of 49 predictions based on 7 speed spectrums show that the root mean square error and maximum error are less than 2.32 μm and 3.73 μm, respectively. Compared with two traditional methods, the proposed method has higher accuracy and stronger robustness, which is effective for sensor selection of thermal error modeling.</description><subject>CAE) and Design</subject><subject>Classification</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Correlation coefficients</subject><subject>Cross correlation</subject><subject>Engineering</subject><subject>Error reduction</subject><subject>Grinding machines</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Modelling</subject><subject>Original Article</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>Temperature sensors</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4CrgttGTy8wk7qR4g0I3ug6ZmaROmUtNMguLD2_aEdy5Cif5_j-cD6FrCrcUoLgLALQAAowRUJAxsj9BMyo4JxxodopmwHJJeJHLc3QRwjbhOc3lDH2vy2iavuk3uBu8xWa388PONyZaHG23s97EMd0H24fB43aoTGyGPmCXpvhhfWdabL1PUzfUtk1F99jbeqwO2AJXrQmhcc0UW2DT16mrtcfnS3TmTBvs1e85R-9Pj2_LF7JaP78uH1akYkJF4ooyEwUAlAV1BbOlBHC1StswJ5zL6koJyOpcKM5rJzgoI520RcZMpqQRfI5upt602-doQ9TbYfR9-lKzPAchFeUqUWyiKj-E4K3TyUNn_JemoA-W9WRZJ8v6aFnvU4hPoZDgfmP9X_U_qR91sILQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Liao, Qihao</creator><creator>Wang, Ling</creator><creator>Yin, Ming</creator><creator>Xie, Luofeng</creator><creator>Yin, Guofu</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220601</creationdate><title>Obtaining more appropriate temperature sensor locations for thermal error modeling: reduction, classification, and selection</title><author>Liao, Qihao ; Wang, Ling ; Yin, Ming ; Xie, Luofeng ; Yin, Guofu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-f7b547000b71f72eb800fd93762f4ff5dc9405d64933df4309a8f8e752a598a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CAE) and Design</topic><topic>Classification</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Correlation coefficients</topic><topic>Cross correlation</topic><topic>Engineering</topic><topic>Error reduction</topic><topic>Grinding machines</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Modelling</topic><topic>Original Article</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Qihao</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Yin, Ming</creatorcontrib><creatorcontrib>Xie, Luofeng</creatorcontrib><creatorcontrib>Yin, Guofu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Qihao</au><au>Wang, Ling</au><au>Yin, Ming</au><au>Xie, Luofeng</au><au>Yin, Guofu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obtaining more appropriate temperature sensor locations for thermal error modeling: reduction, classification, and selection</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>120</volume><issue>7-8</issue><spage>5175</spage><epage>5192</epage><pages>5175-5192</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Obtaining appropriate temperature sensor locations is crucial for data-driven thermal error modeling. The pseudo-correlation and variable ranking will cause inappropriate sensor selection results. In this paper, a three-step sensor selection strategy based on the detrended cross-correlation coefficient is proposed to obtain a stable and robust set of thermal key points. Combined with sensor reduction and classification, 15 sensors are reduced to 9 and classified into 3 groups. Finally, three sensors are selected as thermal key points. The sensor selection results are applied to a support vector machine model for a CNC grinding machine. The modeling results of 49 predictions based on 7 speed spectrums show that the root mean square error and maximum error are less than 2.32 μm and 3.73 μm, respectively. Compared with two traditional methods, the proposed method has higher accuracy and stronger robustness, which is effective for sensor selection of thermal error modeling.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-09052-z</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2022-06, Vol.120 (7-8), p.5175-5192 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2660489139 |
source | SpringerNature Journals |
subjects | CAE) and Design Classification Computer-Aided Engineering (CAD Correlation coefficients Cross correlation Engineering Error reduction Grinding machines Industrial and Production Engineering Mechanical Engineering Media Management Modelling Original Article Sensors Support vector machines Temperature sensors |
title | Obtaining more appropriate temperature sensor locations for thermal error modeling: reduction, classification, and selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A07%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obtaining%20more%20appropriate%20temperature%20sensor%20locations%20for%20thermal%20error%20modeling:%20reduction,%20classification,%20and%20selection&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Liao,%20Qihao&rft.date=2022-06-01&rft.volume=120&rft.issue=7-8&rft.spage=5175&rft.epage=5192&rft.pages=5175-5192&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-09052-z&rft_dat=%3Cproquest_cross%3E2660489139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660489139&rft_id=info:pmid/&rfr_iscdi=true |